
Simulink® Real-Time™

User's Guide

R2015b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Real-Time™ User's Guide
© COPYRIGHT 1999–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

September 1999 First printing New for Version 1 (Release 11.1)
November 2000 Online only Revised for Version 1.1 (Release 12)
June 2001 Online only Revised for Version 1.2 (Release 12.1)
September 2001 Online only Revised for Version 1.3 (Release 12.1+)
July 2002 Online only Revised for Version 2 (Release 13)
June 2004 Online only Revised for Version 2.5 (Release 14)
August 2004 Online only Revised for Version 2.6 (Release 14+)
October 2004 Online only Revised for Version 2.6.1 (Release 14SP1)
November 2004 Online only Revised for Version 2.7 (Release 14SP1+)
March 2005 Online only Revised for Version 2.7.2 (Release 14SP2)
September 2005 Online only Revised for Version 2.8 (Release 14SP3)
March 2006 Online only Revised for Version 2.9 (Release 2006a)
May 2006 Online only Revised for Version 3.0 (Release 2006a+)
September 2006 Online only Revised for Version 3.1 (Release 2006b)
March 2007 Online only Revised for Version 3.2 (Release 2007a)
September 2007 Online only Revised for Version 3.3 (Release 2007b)
March 2008 Online only Revised for Version 3.4 (Release 2008a)
October 2008 Online only Revised for Version 4.0 (Release 2008b)
March 2009 Online only Revised for Version 4.1 (Release 2009a)
September 2009 Online only Revised for Version 4.2 (Release 2009b)
March 2010 Online only Revised for Version 4.3 (Release 2010a)
September 2010 Online only Revised for Version 4.4 (Release 2010b)
April 2011 Online only Revised for Version 5.0 (Release 2011a)
September 2011 Online only Revised for Version 5.1 (Release 2011b)
March 2012 Online only Revised for Version 5.2 (Release 2012a)
September 2012 Online only Revised for Version 5.3 (Release 2012b)
March 2013 Online only Revised for Version 5.4 (Release 2013a)
September 2013 Online only Revised for Version 5.5 (Release 2013b)
March 2014 Online only Revised for Version 6.0 (Release 2014a)
October 2014 Online only Revised for Version 6.1 (Release 2014b)
March 2015 Online only Revised for Version 6.2 (Release 2015a)
September 2015 Online only Revised for Version 6.3 (Release 2015b)

v

Contents

Model Architectures

FPGA Models
1

FPGA Support . 1-2

FPGA Programming and Configuration 1-4

Simulink Domain Model . 1-6

FPGA Subsystem Plan . 1-8
Target Device . 1-8
FPGA Synchronization Mode . 1-8
FPGA Inports and Outports . 1-8
FPGA Clock Frequency . 1-9

FPGA Target Configuration . 1-11

FPGA Target Interface Configuration 1-13

FPGA Target Frequency Configuration 1-15

Simulink Real-Time Interface Subsystem Generation 1-17

Simulink Real-Time Domain Model 1-20

Simulink Real-Time Interface Subsystem Integration 1-22

Real-Time Application Execution 1-24

vi Contents

Interrupt Configuration . 1-25
FPGA Domain Model . 1-25
Simulink Real-Time Domain Model 1-26

FPGA Synchronization Modes . 1-27

Vector CANape Support
2

Vector CANape . 2-2
Vector CANape Basics . 2-2
Simulink Real-Time and Vector CANape Limitations . . 2-3

Configuring the Model for Vector CANape 2-4
Setting Up and Building the Model 2-4
Creating a New Vector CANape Project 2-5
Configuring the Vector CANape Device 2-6
Providing A2L (ASAP2) Files for Vector CANape 2-8

Event Mode Data Acquisition . 2-10
Guidelines . 2-10
Limitations . 2-10

Incorporating Fortran S-Functions
3

Fortran S-Functions . 3-2
Prerequisites . 3-2
Simulink Demos Folder . 3-2
Steps to Incorporate Fortran . 3-3

Fortran Atmosphere Model . 3-4
Creating a Fortran Atmosphere Model 3-4
Compiling Fortran Files . 3-5
Creating a C-MEX Wrapper S-Function 3-6
Compiling and Linking the Wrapper S-Function 3-10
Validating the Fortran Code and Wrapper S-Function . 3-11

vii

Preparing the Model for the Real-Time Application
Build . 3-12

Building and Running the Real-Time Application 3-13

Real-Time Application Setup

Real-Time Application Environment
4

Simulink Real-Time Options Configuration
Parameters . 4-3

Simulink Real-Time Explorer Basic Operations 4-4

Default Target Computers . 4-6

Save Environment Properties . 4-7

Command-Line C Compiler Configuration 4-8

Command-Line Setup . 4-9

Command-Line Ethernet Link Setup 4-10

Command-Line PCI Bus Ethernet Setup 4-11

PCI Bus Ethernet Protocol Hardware 4-12

Command-Line PCI Bus Ethernet Settings 4-13

Command-Line USB-to-Ethernet Setup 4-15

USB-to-Ethernet Protocol Hardware 4-16

Command-Line USB-to-Ethernet Settings 4-17

Command-Line ISA Bus Ethernet Setup 4-19

viii Contents

ISA Bus Ethernet Protocol Hardware 4-20

Command-Line ISA Bus Ethernet Settings 4-22

Ethernet Card Selection by Index 4-24

Command-Line Ethernet Card Selection by Index . . . 4-26

Command-Line Serial Link Setup 4-28

RS-232 Protocol Hardware . 4-29

Command-Line RS-232 Settings 4-30

Command-Line Target Computer Settings 4-31

Command-Line Target Boot Methods 4-34

Command-Line Kernel Creation Prechecks 4-35

Command-Line Network Boot Method 4-36

Command-Line CD/DVD Boot Method 4-38

Command-Line DOS Loader Boot Method 4-39

Command-Line Removable Disk Boot Method 4-41

Command-Line Standalone Boot Method 4-43

Command-Line Standalone Settings 4-44

Signals and Parameters
5

Signal Monitoring Basics . 5-3

Monitor Signals Using Simulink Real-Time Explorer . . 5-4

ix

Monitor Signals Using MATLAB Language 5-7

Configure Stateflow States as Test Points 5-8

Monitor Stateflow States Using Simulink Real-Time
Explorer . 5-10

Signal Group Monitoring Formats 5-13

Monitor Stateflow States Using MATLAB Language . . 5-14

Animate Stateflow Charts Using Simulink External
Mode . 5-15

Signal Tracing Basics . 5-17

Configure Real-Time Target Scope Blocks 5-18

Simulink Real-Time Scope Usage 5-23

Target Scope Usage . 5-24

Configure Real-Time Host Scope Blocks 5-25

Host Scope Usage . 5-28

Create Target Scopes Using Simulink Real-Time
Explorer . 5-29

Configure Scope Sampling Using Simulink Real-Time
Explorer . 5-34

Trigger Scopes Interactively Using Simulink Real-Time
Explorer . 5-37

Freerun Triggering . 5-37
Software Triggering . 5-37

Trigger Scopes Noninteractively Using Simulink Real-
Time Explorer . 5-40

Signal Triggering . 5-40
Scope Triggering . 5-42

x Contents

Configure Target Scopes Using Simulink Real-Time
Explorer . 5-46

Create Signal Groups Using Simulink Real-Time
Explorer . 5-50

Create Host Scopes Using Simulink Real-Time
Explorer . 5-53

Configure the Host Scope Viewer 5-57

Configure Target Scopes Using MATLAB Language . . 5-59

Trace Signals Using Simulink External Mode 5-62

External Mode Usage . 5-65

Trace Signals Using a Web Browser 5-66

Signal Logging Basics . 5-67

Configure Real-Time File Scope Blocks 5-68

File Scope Usage . 5-73

Create File Scopes Using Simulink Real-Time
Explorer . 5-75

Configure File Scopes Using Simulink Real-Time
Explorer . 5-79

Log Signal Data into Multiple Files 5-82

Log Signal Data Using Outport Block and Simulink Real-
Time Explorer . 5-86

Log Signal Data Using Outport Block and MATLAB
Language . 5-89

Configure File Scopes Using MATLAB Language 5-94

Log Signals Using a Web Browser 5-99

xi

Tune Parameters Using Simulink Real-Time Explorer 5-101

Create Parameter Groups Using Simulink Real-Time
Explorer . 5-105

Tune Parameters Using MATLAB Language 5-107

Tune Parameters Using Simulink External Mode . . . 5-110

Tune Parameters Using a Web Browser 5-112

Save and Reload Parameters Using MATLAB
Language . 5-113

Save the Current Set of Real-Time Application
Parameters . 5-113

Load Saved Parameters to a Real-Time Application . . 5-114
List the Values of Parameters Stored in a File 5-115

Parameter Tuning Basics . 5-116

Configure Model to Tune Inlined Parameters 5-118

Tune Inlined Parameters Using Simulink Real-Time
Explorer . 5-121

Tune Inlined Parameters Using MATLAB Language . 5-124

Nonobservable Signals and Parameters 5-125

Internationalization Issues . 5-126

Execution Modes
6

Execution Modes . 6-2

Interrupt Mode . 6-3

Polling Mode . 6-5
Set Polling Mode . 6-7

xii Contents

Restrictions on Single- and Multicore Processors 6-8
Control Real-Time Application on Single-Core

Processor . 6-11

Real-Time Application Execution

Execution Using Graphical User Interface
Models

7
Simulink Real-Time Interface Blocks to Simulink

Models . 7-2
Simulink User Interface Model 7-2
Creating a Custom Graphical Interface 7-3
To Target Block . 7-4
From Target Block . 7-6
Creating a Real-Time Application Model 7-8
Marking Block Parameters . 7-8
Marking Block Signals . 7-10

Execution Using the Target Computer Command
Line

8
Control Real-Time Application at Target Computer

Command Line . 8-2

Trace Signals at Target Computer Command Line 8-3

Tune Parameters at Target Computer Command Line . 8-5

Alias Commands at Target Computer Command Line . 8-6

Find Signal and Parameter Indexes 8-7

xiii

Execution Using the Web Browser Interface
9

Web Browser Interface . 9-2
Introduction . 9-2
Connecting the Web Interface Through TCP/IP 9-2
Connecting the Web Interface Through RS-232

Connection . 9-3
Using the Main Pane . 9-6
Changing WWW Properties . 9-9
Viewing Signals with a Web Browser 9-9
Viewing Parameters with a Web Browser 9-10
Changing Access Levels to the Web Browser 9-10

Tuning Performance
10

Improve Performance of Multirate Model 10-2
Generate Baseline . 10-2
Perform Real-Time Checks . 10-5
Final Validation . 10-8

Multicore Processor Configuration 10-11

Maximizing Target Computer CPU Usage 10-13

Execution Profiling for Real-Time Applications 10-15

Configure Real-Time Application for Profiling 10-16

Generate Real-Time Application Execution Profile . . 10-19

Building Referenced Models in Parallel 10-24

xiv Contents

Execution Using MATLAB Scripts

Real-Time Applications and Scopes in the
MATLAB Interface

11
MATLAB Language Interface . 11-2

Real-Time Application Objects . 11-3

Create Real-Time Application Objects 11-4

Display Application Object Properties 11-5

Set Real-Time Application Object Property Values . . . 11-6

Get Real-Time Application Object Property Values . . 11-7

Use Real-Time Application Object Functions 11-8

Real-Time Scope Objects . 11-9

Display Scope Object Properties for One Scope 11-11

Display Scope Object Properties for Multiple Scopes 11-12

Set Scope Property Values . 11-13

Get Scope Property Values . 11-14

Use Scope Object Functions . 11-16

Acquire Signal Data with File Scopes 11-17

Acquire Signal Data into Dynamically Named Files . 11-18

Scope Trigger Configuration . 11-20

Pre- and Post-Triggering of Scopes 11-21

xv

Trigger One Scope with Another Scope 11-23
Scope-Triggered Data Acquisition 11-23
Trigger Sample Setting . 11-26

Acquire Gap-Free Data Using Two Scopes 11-30

Logging Signal Data with File System Objects
12

File System Basics . 12-2

Using SimulinkRealTime.fileSystem Objects 12-4
Copying a File from the Target Computer to the

Development Computer . 12-5
Copying a File from the Development Computer to the

Target Computer . 12-5
Accessing File Systems on a Specific Target Computer 12-6
Reading the Contents of a File on the Target

Computer . 12-7
Removing a File from the Target Computer 12-9
Getting a List of Open Files on the Target Computer . . 12-9
Getting Information about a File on the Target

Computer . 12-10
Getting Information about a Disk on the Target

Computer . 12-11

Troubleshooting

Getting Started with Troubleshooting
13

Troubleshooting Procedure . 13-2

xvi Contents

Confidence Test Failures
14

Test 1: Ping Using System Ping 14-2

Test 2: Ping Using slrtpingtarget 14-5

Test 3: Restart Target Computer 14-7

Test 4: Build and Download xpcosc 14-9

Test 5: Check Ethernet and Serial Links 14-12

Test 6: Download Prebuilt Real-Time Application . . . 14-13

Test 7: Execute Real-Time Application 14-14

Test 8: Upload Logged Data and Compare 14-15

Development Computer Configuration
15

Why Does Boot Drive Creation Halt? 15-2

Target Computer Configuration
16

Faulty BIOS Settings on Target Computer 16-2

Why is My Hard Drive Not Recognized? 16-3

Allowable Partitions on the Target Hard Drive 16-4

File System Disabled on the Target Computer 16-5

Adjust the Target Computer Stack Size 16-6

xvii

Where to Find PCI Board Information 16-7

How to Diagnose My Board Driver 16-8

Ethernet and Serial Links
17

Is There a Link Between the Computers? 17-2

Boards with Slow Initialization 17-4

Timeout with Multiple Ethernet Cards 17-6

Recovery from Board Driver Errors 17-8

How Can I Diagnose Network Problems? 17-9

Target Computer Start Process
18

Why Won’t the Target Computer Start? 18-2

Why Won't the Kernel Load? . 18-4

Why Is the Target Medium Not Bootable? 18-5

Why Is the Target Computer Halted? 18-6

Modeling
19

How Do I Handle Encoder Register Rollover? 19-2

xviii Contents

How Can I Write Custom Device Drivers? 19-3

Model Compilation
20

Requirements for Standalone Real-Time
Applications . 20-2

Compiler Errors from Models Linked to DLLs 20-3

Compilation Failure with WATCOM Compilers 20-4

Real-Time Application Download
21

Why Does My Download Time Out? 21-2

Increase the Time for Downloads 21-3

Why Does the Download Halt? . 21-4

Real-Time Application Execution
22

View Real-Time Application Execution from the
Development Computer . 22-2

Sample Time Deviates from Expected Value 22-3

What Measured Sample Time Can I Expect? 22-5

Why Has the Stop Time Changed? 22-6

Why Is the Web Interface Not Working? 22-7

xix

Real-Time Application Parameters
23

Why Does the getparamid Function Return Nothing? . 23-2

Which Model Parameters Can I Tune? 23-3

Real-Time Application Signals
24

How Do I Fix Invalid File IDs? 24-2

Which Model Signals Can I Access? 24-3

Signals Display as ? on Target Computer Screen 24-4

Real-Time Application Performance
25

How Can I Improve Run-Time Performance? 25-2

Why Does Model Execution Produce CPU Overloads? 25-4

How Small Can the Sample Time Be? 25-6

Can I Allow CPU Overloads? . 25-7

Simulink Real-Time Support
26

Getting Simulink Real-Time Support 26-2

Installing Simulink Real-Time Software Updates 26-3

Model Architectures

1

FPGA Models

• “FPGA Support” on page 1-2
• “FPGA Programming and Configuration” on page 1-4
• “Simulink Domain Model” on page 1-6
• “FPGA Subsystem Plan” on page 1-8
• “FPGA Target Configuration” on page 1-11
• “FPGA Target Interface Configuration” on page 1-13
• “FPGA Target Frequency Configuration” on page 1-15
• “Simulink Real-Time Interface Subsystem Generation” on page 1-17
• “Simulink Real-Time Domain Model” on page 1-20
• “Simulink Real-Time Interface Subsystem Integration” on page 1-22
• “Real-Time Application Execution” on page 1-24
• “Interrupt Configuration” on page 1-25
• “FPGA Synchronization Modes” on page 1-27

1 FPGA Models

1-2

FPGA Support

Simulink Real-Time and HDL Coder™ software enable you to implement Simulink
algorithms and configure I/O functionality on Speedgoat field programmable gate array
(FPGA) boards. Speedgoat I/O FPGA boards are sold as part of Speedgoat turnkey
systems. For information on Speedgoat I/O modules, see “Speedgoat I/O Configuration”.

Simulink Real-Time supports the following Speedgoat boards.

Board Description

Speedgoat IO301 Xilinx® Virtex-II, 6912 logic cells, 64 TTL I/O lines
Speedgoat IO302 Xilinx Virtex-II, 6912 logic cells, 32 RS-422 I/O lines
Speedgoat IO303 Xilinx Virtex-II, 6912 logic cells, 16 TTL and 24

RS-422 I/O lines
Speedgoat IO311 Xilinx Virtex-II, 24192 logic cells, 64 TTL I/O lines
Speedgoat IO312 Xilinx Virtex-II, 24192 logic cells, 32 RS-422 I/O

lines
Speedgoat IO313 Xilinx Virtex-II, 24192 logic cells, 16 TTL and 24

RS-422 I/O lines
Speedgoat IO314 Xilinx Virtex-II, 24192 logic cells, 32 LVDS I/O lines
Speedgoat IO321 Xilinx Virtex-4 chip, 41472 logic cells, 64 LVCMOS

or 32 LVDS (four are input only) I/O lines, two 16-
bit 105 MHz analog input channels, optional high-
speed AXM-A30 A/D port subassembly (Speedgoat
IO321-5).

Speedgoat IO331 Xilinx Spartan® 6 chip, 147333 logic cells, 64
LVCMOS or 32 LVDS I/O lines, optional AXM-A75
A/D and D/A converter subassembly (Speedgoat
IO331-6).

To work with FPGAs in the Simulink Real-Time environment, you must:

• Install HDL Coder and Xilinx ISE. For the specific ISE version required, see the
Speedgoat board documentation. For more information, see “Tool Setup” in the HDL
Coder documentation.

• Install the Speedgoat FPGA I/O board in the Speedgoat target machine.

 FPGA Support

1-3

• Be familiar with FPGA technology. In particular, you must know the clock frequency
and the I/O connector pin and channel configuration of your FPGA board.

• Have experience using data type conversion and designing Simulink fixed-point
algorithms.

To generate HDL code for your FPGA target, you do not need to have HDL programming
experience.

The Simulink Real-Time product provides the following FPGA examples.

Example Description

“Servo Control with the

Speedgoat IO301 FPGA

Board”

Shows programming and configuring the Speedgoat
IO301 with a simple PWM servo controller, counter,
and digital I/O.

“Digital I/O with the

Speedgoat IO303 FPGA

Board”

Shows programming and configuring the Speedgoat
IO303 for digital I/O.

1 FPGA Models

1-4

FPGA Programming and Configuration

To implement Simulink algorithms on a Speedgoat FPGA I/O board, you use “HDL
Workflow Advisor” to specify an FPGA board and its I/O interface, synthesize the
Simulink algorithm for FPGA programming, and generate a Simulink Real-Time
interface subsystem model. The interface subsystem model contains blocks to program
the FPGA and communicate with the FPGA I/O board during real-time application
execution. You add the generated subsystem to your Simulink Real-Time domain model.

The workflow looks like this figure.

Before you begin this procedure, you must have completed the following:

• “Simulink Domain Model” on page 1-6
• “FPGA Subsystem Plan” on page 1-8

This procedure uses example “Servo Control with the Speedgoat IO301 FPGA
Board”.

 FPGA Programming and Configuration

1-5

1 “FPGA Target Configuration” on page 1-11
2 “FPGA Target Interface Configuration” on page 1-13
3 “FPGA Target Frequency Configuration” on page 1-15
4 “Simulink Real-Time Interface Subsystem Generation” on page 1-17
5 “Simulink Real-Time Domain Model” on page 1-20
6 “Simulink Real-Time Interface Subsystem Integration” on page 1-22

The next task is “Real-Time Application Execution” on page 1-24.

1 FPGA Models

1-6

Simulink Domain Model

The Simulink FPGA domain model contains a subsystem (algorithm) to be programmed
onto the FPGA chip. Using this model, you can test your FPGA algorithm in a simulation
environment before you download the algorithm to an FPGA board.

1 Create a Simulink model to contain the algorithm that you want to load onto the
FPGA.

2 Place the algorithm to be programmed on the FPGA inside a Subsystem block. The
model can include other blocks and subsystems for testing. However, one subsystem
must contain the FPGA algorithm.

3 Set or confirm the subsystem inport and outport names and data types.

The HDL Coder HDL Workflow Advisor uses these settings for routing and mapping
algorithm signals to I/O connector channels. See “FPGA Subsystem Plan” on page
1-8.

4 Save the model.

This model is your FPGA domain model. It represents the simulation sample rate of the
clock on your FPGA board. For example, the Speedgoat IO301 has an onboard 33MHz
clock. One second of simulation equals 33e6 iterations of the model.

For an example of an FPGA domain model, see dxpcSGIO301servo_fpga. The
ServoSystem subsystem contains the FPGA algorithm.

 Simulink Domain Model

1-7

1 FPGA Models

1-8

FPGA Subsystem Plan

Before you work with the HDL Coder HDL Workflow Advisor, plan how to prepare the
FPGA subsystem for HDL code generation and FPGA synthesis.

Target Device

You must decide which FPGA to target for code generation. The example procedure uses
the Simulink Real-Time FPGA workflow and the Speedgoat IO301 FPGA IO board for
target platform. These choices require that you use the Xilinx ISE synthesis tool.

For information about other target devices, see “Supported Third-Party Tools and
Hardware”.

FPGA Synchronization Mode

To select the processor/FPGA synchronization mode, you must decide which of the FPGA
synchronization modes to use:

• Free running

• Coprocessing — blocking

• Coprocessing — nonblocking with delay.

For more information, see “FPGA Synchronization Modes” on page 1-27.

FPGA Inports and Outports

Inports and outports may transmit signal data between the Speedgoat target machine
and the FPGA over the PCI bus or map to I/O channels for communicating with external
devices. For connector pin and I/O channel assignments of your supported FPGA I/O
board, see the board reference page for your board.

In addition to the Port Name and Port Type (Inport or Outport), to specify the I/O
interface, see:

• Data Type—Encodes such attributes as width and sign. Data types must map
consistently to their corresponding I/O pins. An inport of type Boolean requires 1 bit,
one of type uint32 requires 32 bits, and so on. For example, you cannot connect an

 FPGA Subsystem Plan

1-9

inport of type uint32 to an FPGA I/O interface of type TTL I/O channel [0:7]; it
requires TTL I/O channel [0:31].

• Target Platform Interfaces—Encodes the I/O channels on the FPGA as well as
their functional type. For a single-ended interface (TTL, LVCMOS), one channel maps
to one connector pin. For a differential interface (RS422, LVDS), one channel maps to
two connector pins. To discover the mapping for a particular pin, see the pin connector
map provided with the board description.

I/O channels may also map to a predefined specification or role (PCI Interface,
Interrupt from FPGA).

For information on using FPGA interrupts, see “Interrupt Configuration” on page
1-25.

• Bit Range/Address/FPGA Pin—Encodes the pins on the target platform to which
the inports and outports are assigned, along with the channel number used by the
port. For specification PCI Interface, Bit Range/Address/FPGA Pin encodes the
PCI address used by the port.

If vector inports or outports are required, specify a vector port:

• Inport — Add a mux outside the subsystem that connects to a demux inside the
subsystem.

• Outport – Add a mux inside the subsystem that connects to a demux outside the
subsystem.

• Inport and Outport – Configure the port dimension to be greater than 1.

Workflow Advisor automatically inserts a strobe to achieve a simultaneous update of
vector elements.

If you have specified vector inports or outports, before generating code, you must select
the Scalarize vector ports check box. This check box is on the Coding style tab
of node Global Settings, under node HDL Code Generation in the Configuration
Parameters dialog box.

FPGA Clock Frequency

The FPGA system clock frequency defaults to the fixed FPGA input clock frequency. The
fixed FPGA input clock frequency is shown in the FPGA input clock frequency (MHz)
box. You can specify another frequency in this box. If the FPGA clock circuits cannot

1 FPGA Models

1-10

generate the specified value exactly, HDL Coder HDL Workflow Advisor generates the
closest match. The closest match, Fsystem, is based on the following formula:

F F ClkFxMultiply ClkFxDividesystem input= * /

Finput is the fixed FPGA input clock frequency. ClkFxMultiply and ClkFxDivide are
integers.

 FPGA Target Configuration

1-11

FPGA Target Configuration

This procedure uses the dxpcSGIO301servo_fpga example. You must have already
created an FPGA subsystem (algorithm) in an FPGA domain model and developed an
FPGA subsystem plan. See “Simulink Domain Model” on page 1-6 and “FPGA Subsystem
Plan” on page 1-8.

1 Open the FPGA domain model dxpcSGIO301servo_fpga.
2 In the FPGA model, right-click the FPGA subsystem (ServoSystem). From the

context menu, select HDL Code > HDL Workflow Advisor.

The HDL Workflow Advisor dialog box displays a number of tasks for the
subsystem. You need to address only a subset of the tasks.

3 Expand the Set Target folder and select task 1.1 Set Target Device and
Synthesis Tool.

4 Set Target Workflow to Simulink Real-Time FPGA I/O.
5 From the Target platform list, select the Speedgoat FPGA I/O board installed in

your Speedgoat target machine.

For the dxpcSGIO301servo_fpga example, this is Speedgoat IO301.
6 From the Synthesis tool list, select Xilinx ISE.
7 Click Run This Task.

1 FPGA Models

1-12

The next task is “FPGA Target Interface Configuration” on page 1-13.

 FPGA Target Interface Configuration

1-13

FPGA Target Interface Configuration

This procedure uses the dxpcSGIO301servo_fpga example. You must have already
developed an FPGA subsystem plan and configured the FPGA target. See “FPGA
Subsystem Plan” on page 1-8 and “FPGA Target Configuration” on page 1-11.

1 In the Set Target folder, select task 1.2 Set Target Interface.
2 In the Processor/FPGA synchronization box, select Free running.

For information about FPGA synchronization modes, see “FPGA Synchronization
Modes” on page 1-27.

3 For signals between the Speedgoat target machine and the FPGA (Port Type
Inport) — In the Target Platform Interfaces column, select PCI Interface.

In the Bit Range/Address/FPGA Pin column, use the automatically generated
values. Do not enter PCI address values.

4 For signals from the FPGA to I/O lines (Port Type Outport)— In the Target
Platform Interfaces column, select the required I/O channel type (for example, TTL
I/O Channel [0:63]).

In the Bit Range/Address/FPGA Pin column, enter the channel value for each
signal.

5 After specifying interfaces for the required signals, click Run This Task.

1 FPGA Models

1-14

For more information about mapping Speedgoat FPGA I/O pins in HDL Coder HDL
Workflow Advisor, see “Set the Target Interface for Speedgoat Boards”.

The next task is “FPGA Target Frequency Configuration” on page 1-15.

 FPGA Target Frequency Configuration

1-15

FPGA Target Frequency Configuration

This optional procedure uses the dxpcSGIO301servo_fpga example. You must have
already developed an FPGA subsystem plan and configured the FPGA target interface.
See “FPGA Subsystem Plan” on page 1-8 and “FPGA Target Interface Configuration” on
page 1-13.

1 In the Set Target folder, select task 1.3 Set Target Frequency (optional).

The Set Target Frequency pane contains fields showing the FPGA input clock
frequency (fixed) and the FPGA system clock frequency. The FPGA system clock
frequency defaults to the FPGA input clock frequency.

2 To specify a different system clock frequency (for example, 50 MHz), type the new
value in the field FPGA system clock frequency (MHz). For the permitted range
for the system clock rate, see the Speedgoat board characteristics table.

The system may set a value different from the one you specified. For more
information, see “FPGA Clock Frequency” on page 1-9.

3 Click Run This Task.

1 FPGA Models

1-16

The next task is “Simulink Real-Time Interface Subsystem Generation” on page 1-17.

 Simulink Real-Time Interface Subsystem Generation

1-17

Simulink Real-Time Interface Subsystem Generation

This procedure uses the dxpcSGIO301servo_fpga example. You must have already
configured the FPGA target interface and the required target frequency. If you have
specified vector inports or outports, you must have already selected the Scalarize
vector ports check box. This check box is on the Coding style tab of node Global
Settings, under node HDL Code Generation in the Configuration Parameters dialog
box.

1 Expand the Download to Target folder, and right-click task 5.2 Generate
Simulink Real-Time Interface.

2 In this pane, click Run To Selected Task.

This action:

• Runs the remaining tasks.
• Creates the FPGA bitstream file in the hdlsrc folder. The Simulink Real-Time

interface subsystem references this bitstream file during the build and download
process.

• Generates a model named gm_fpgamodelname_slrt, which contains the Simulink
Real-Time interface subsystem.

Here is an example of the HDL Coder HDL Workflow Advisor after this action.

1 FPGA Models

1-18

The generated interface subsystem looks like this figure.

 Simulink Real-Time Interface Subsystem Generation

1-19

This generated model contains a masked subsystem with the same name as the
subsystem in the Simulink FPGA domain model. Although the appearance is similar,
this subsystem does not contain the Simulink algorithm. Instead, the algorithm is
implemented in an FPGA bitstream. You reference and load this algorithm into the
FPGA from this subsystem.

The next task is “Simulink Real-Time Domain Model” on page 1-20.

1 FPGA Models

1-20

Simulink Real-Time Domain Model

Using the Simulink Real-Time software, you can transform a Simulink or Stateflow®

domain model into a Simulink Real-Time domain model and execute it on a Speedgoat
target machine for real-time testing applications. After creating a Speedgoat FPGA
domain model and the Simulink Real-Time interface subsystem using HDL Coder HDL
Workflow Advisor, you can include the FPGA board in your Simulink Real-Time domain
model by inserting the interface subsystem.

1 Create a Simulink Real-Time domain model with the functionality that you want to
simulate in conjunction with the FPGA algorithm.

Leave the inports and outports of the FPGA subsystem disconnected.
2 Save the model.

The Simulink Real-Time domain model looks like this figure. See example model
dxpcSGIO301servo_xpc.

 Simulink Real-Time Domain Model

1-21

The next task is “Simulink Real-Time Interface Subsystem Integration” on page 1-22.

1 FPGA Models

1-22

Simulink Real-Time Interface Subsystem Integration

Before doing this procedure, you must have already generated a Simulink Real-Time
interface subsystem with the HDL Coder software. If you have not yet done so, see
“Simulink Real-Time Interface Subsystem Generation” on page 1-17.

You need to set three parameters in the Simulink Real-Time interface subsystem mask:

• Device index
• PCI slot
• Sample time

In addition, you must evaluate the communication timeout requirements for your model.
The default communication timeout of 5 seconds may not be long enough to download
and program a large FPGA, such as the Speedgoat IO331.

1 In the Simulink editor, open gm_fpgamodelname_slrt.
2 Copy and paste the this subsystem, Simulink Real-Time interface subsystem, into

the Simulink Real-Time domain model.
3 Save or discard gm_fpgamodelname_slrt. You can recreate it as required using the

HDL Coder HDL Workflow Advisor.
4 In the Simulink Real-Time domain model, connect signals to the inports and

outports of the Simulink Real-Time interface subsystem.
5 Set the block parameters according to the FPGA I/O boards in your Speedgoat target

machine.

• If you have a single FPGA I/O board, leave the device index and PCI slot at the
default values. You can set the sample time or leave it at –1 for inheritance.

• If you have multiple FPGA I/O boards, give each board a unique device index.
• If you have two or more boards of the same type (for example, two Speedgoat

IO301 boards), specify the PCI slot ([bus, slot]) for each board. Get this
information with the SimulinkRealTime.target.getPCIInfo function.

6 If you need a larger communication timeout, in the Configuration Parameters
dialog box for the model, expand the Code Generation and Simulink Real-Time
Options nodes, clear the Use default communication timeout check box, and
then enter a new value in the Specify the communication timeout in seconds
box.

7 Save the model.

 Simulink Real-Time Interface Subsystem Integration

1-23

The updated Simulink Real-Time domain model looks like this figure. See example model
dxpcSGIO301servo_xpc_wiss.

You are now ready to build and download the Simulink Real-Time domain model.
Continue with “Real-Time Application Execution” on page 1-24.

1 FPGA Models

1-24

Real-Time Application Execution

To do this procedure, you must have already created a Simulink Real-Time domain
model that includes a Simulink Real-Time interface subsystem generated from the HDL
Coder HDL Workflow Advisor. If you have not yet done so, see “Simulink Real-Time
Interface Subsystem Integration” on page 1-22.

1 Configure the Speedgoat target machine and connect it to the development
computer.

2 Build and download the Simulink Real-Time model. The Simulink Real-Time model
loads onto the Speedgoat target machine and the FPGA algorithm bitstream loads
onto the FPGA.

3 If you are using I/O lines (channels), confirm that you have connected the lines to
your external hardware under test.

The start and stop of the Simulink Real-Time model controls the start and stop of the
FPGA algorithm. The FPGA algorithm executes at the clock frequency of the FPGA I/
O board, while the real-time application executes in accordance with the model sample
time.

 Interrupt Configuration

1-25

Interrupt Configuration

Simulink Real-Time software schedules the real-time application using either the
internal timer of the Speedgoat target machine (default) or an interrupt from an I/O
board. You can use your Speedgoat FPGA board to generate an interrupt, which allows
you to:

• Schedule execution of the real-time application based on this interrupt (synchronous
execution). For this method, you must generate the interrupt periodically.

• Execute a designated subsystem in your real-time application (asynchronous
execution).

To use FPGA-based interrupts, set up and configure the FPGA domain and Simulink
Real-Time domain models.

FPGA Domain Model

In the FPGA domain subsystem, create the interrupt source for the real-time application
in one of the following ways.

Source Description

Internal A clock you create using Simulink blocks to create input signals. This
clock is a binary pulse train of zeros and ones (transition from 0 to 1
and vice versa). The clock generates an interrupt on a rising edge. The
following is an example of an internally generated interrupt source from
Simulink blocks. Connect the internally generated interrupt source to an
outport labelled INT.

External A clock signal that comes from a device outside the Speedgoat target
machine. You use a digital input pin to connect to this signal. The
following is an example of an externally generated interrupt source that
comes from TTL channel 8. Delay this source by one FPGA clock cycle and
connect to an outport labeled INT.

1 FPGA Models

1-26

Source Description

In both cases, wire the interrupt source to an outport in the FPGA subsystem. Assign the
outport as Interrupt from FPGA in the HDL Coder HDL Workflow Advisor task 1.2
Set Target Interface.

You are now ready to set up interrupt support in the Simulink Real-Time domain model.
See “Simulink Real-Time Domain Model” on page 1-26.

Simulink Real-Time Domain Model

For overview information, see “FPGA Domain Model” on page 1-25.

Configure the model Simulink Real-Time domain model to set up interrupt support:

1 Open the Simulink Real-Time domain model.
2 In the Simulink editor, select Simulation > Model Configuration Parameters.
3 Navigate to node Simulink Real-Time Options, under node Code Generation.
4 From the Real-time interrupt source list, select one of the following:

• Auto (PCI only)

• The IRQ assigned to your FPGA board
5 From the I/O board generating the interrupt parameter, select your FPGA

board, for example, Speedgoat_IO301.
6 Add the Simulink Real-Time interface subsystem to the model (see “Simulink Real-

Time Interface Subsystem Integration” on page 1-22).
7 Build and download the real-time application to the Speedgoat target machine.
8 When you start the real-time application, simulation updates occur when the

application receives an interrupt from the FPGA I/O board.

 FPGA Synchronization Modes

1-27

FPGA Synchronization Modes
In Simulink Real-Time, an FPGA operates in three synchronization modes:

• Free running

• Coprocessing — blocking

• Coprocessing — nonblocking with delay

• Free running (default) — The CPU and the FPGA each run nonsynchronized,
continuously, and in parallel. When you want the CPU to run continuously without
interrupts, select this mode. For example, you could select this mode when the model
is processing continuous PWM output.

The Speedgoat target machine CPU strobes data out of the FPGA, reads the results
from the FPGA outputs, writes data to the FPGA inputs, and strobes the data into the
FPGA.

• Coprocessing — blocking — The CPU and the FPGA run synchronized and
in tandem. When the FPGA execution time is short compared to the Speedgoat
target machine sample time, and you want the FPGA to complete before the model
continues, select this coprocessor mode.

1 FPGA Models

1-28

The CPU writes data to the FPGA inputs, strobes the data into the FPGA, waits for
the FPGA to finish executing, and reads the result out of the FPGA outputs.

• Coprocessing — nonblocking with delay — The CPU and the FPGA run
synchronized and in tandem. When the FPGA execution time is long compared to the
Speedgoat target machine sample time, select this coprocessor mode. For example,
you could select this mode to manage multiple FPGAs effectively in parallel.

The CPU waits for the FPGA to finish executing, reads the data from the previous
time step, writes new data to the FPGA inputs, and strobes the data into the FPGA.

 FPGA Synchronization Modes

1-29

2

Vector CANape Support

This topic describes how to use Simulink Real-Time to interface the target computer to
the Vector CAN Application Environment (CANape) (http://www.vector-worldwide.com)
using the Universal Calibration Protocol (XCP). This documentation includes the
following topics:

• “Vector CANape” on page 2-2
• “Configuring the Model for Vector CANape” on page 2-4
• “Event Mode Data Acquisition” on page 2-10

http://www.vector-worldwide.com

2 Vector CANape Support

2-2

Vector CANape

In this section...

“Vector CANape Basics” on page 2-2
“Simulink Real-Time and Vector CANape Limitations” on page 2-3

Vector CANape Basics

You can use a target computer as an electronic control unit (ECU) for a Vector CANape
system. Using a target computer in this way, a Vector CANape system can read signals
and parameters from a real-time application running on the target computer.

The Simulink Real-Time software supports polling and event driven modes for data
acquisition. Polling mode data acquisition is straightforward. Event mode data
acquisition requires additional settings (see “Event Mode Data Acquisition” on page
2-10).

Note: This documentation describes how to configure Simulink Real-Time and Vector
CANape software to work together. It also assumes that you are familiar with the Vector
CANape product family. See http://www.vector-cantech.com for further information about
the Vector CANape products.

The Simulink Real-Time software works with Vector CANape version 5.6 and higher. To
enable a target computer to work with Vector CANape software, you need to:

• Configure Vector CANape to communicate with the Simulink Real-Time software as
an ECU.

• Enable the Simulink Real-Time software to generate a real-time application that can
provide data compliant with Vector CANape.

• Provide a standard TCP/IP physical layer between the development and target
computers. The Simulink Real-Time software supports Vector CANape only through
TCP/IP.

To support the XCP communication layer, the Simulink Real-Time software provides:

• An XCP server process in the real-time application that runs on-demand in the
background.

http://www.vector-cantech.com

 Vector CANape

2-3

• A generator that produces A2L (ASAP2) files that Vector CANape can load into the
Vector CANape software database. The generated file contains signal and parameter
access information for the real-time application.

Simulink Real-Time and Vector CANape Limitations

The Simulink Real-Time software supports the ability to acquire signal data at the
base sample rate of the model. The Simulink Real-Time software does not support the
following for Vector CANape:

• Vector CANape start and stop ECU (target computer) commands

Tip To start and stop the real-time application on the target computer, use the
Simulink Real-Time start and stop commands, for example start(tg), stop(tg).

• Vector CANape calibration commands or flash RAM calibration commands
• Multiple simultaneous Vector CANape connections to a single target computer

2 Vector CANape Support

2-4

Configuring the Model for Vector CANape

In this section...

“Setting Up and Building the Model” on page 2-4
“Creating a New Vector CANape Project” on page 2-5
“Configuring the Vector CANape Device” on page 2-6
“Providing A2L (ASAP2) Files for Vector CANape” on page 2-8

Setting Up and Building the Model

Set up your model to work with Vector CANape. The following procedure uses the
xpcosc model. It assumes that you have already configured your model to generate
Simulink Real-Time code. If you have not done so, see “Set Configuration Parameters”
and “Simulink Real-Time Options Configuration Parameters” on page 4-3. It also
assumes that you have already created a Vector CANape project. If you have not done so,
see “Creating a New Vector CANape Project” on page 2-5.

1 In the MATLAB® Command Window, type

xpcosc

2 Open the Simulink Real-Time library. For example, in the MATLAB window, type

slrtlib

3 Navigate to the Displays and Logging sublibrary and double-click that library.
4 Drag the XCP Server block to the xpcosc model.

This block enables an XCP server process to run in the real-time application.
5 In the model, double-click the XCP Server block. Check the following parameters:

• Target Address — Target IP address for target computer. The default value is
slrtGetTargetSettings(`TcpIpTargetAddress'). Typically, you will want
to leave the default entry. Otherwise, enter the TCP/IP address for the target
computer.

• Server Port — Port for communication between target computer and XCP
server. The default value is 5555. This value must be the same as the port
number you specify for the Vector MATLAB device.

 Configuring the Model for Vector CANape

2-5

6 If you want to use the event mode to acquire signal data, set the priority of
the xcpserver block to be the lowest priority. For example, enter a priority of
10000000. For Simulink blocks, the higher the priority number, the lower the
priority.

7 In the model Simulink window, click Simulation > Model Configuration
Parameters.

The Configuration Parameters dialog box is displayed for the model.
8 In the left pane, click the Simulink Real-Time Options node.

The associated pane is displayed.
9 In the Miscellaneous options area, select the Generate CANape extensions

check box.

This option enables real-time applications to generate data, such as that for A2L
(ASAP2), for Vector CANape.

10 Build the model.

The Simulink Real-Time software builds the real-time application, including an A2L
(ASAP2) data file for the real-time application.

11 On the target computer monitor, look for the following message. These messages
indicate that you have built the real-time application without producing an error and
can now connect to the target with Vector CANape.

XCP Server set up, waiting for connection

You can now create a new Vector CANape project (see “Creating a New Vector CANape
Project” on page 2-5.

Creating a New Vector CANape Project

This procedure describes how to create a new Vector CANape project that can
communicate with a real-time application. It assumes that you have set up, built, and
downloaded your model (see “Setting Up and Building the Model” on page 2-4).

1 In a DOS window, create a new folder to hold your project. This can be the same
folder as your Simulink Real-Time model files. For example, type

mkdir C:\MyProject

2 Start Vector CANape.

2 Vector CANape Support

2-6

3 Select File > New project.

A new project wizard is displayed. Follow this dialog to create a new project.
4 After you create the new project, start it.

After the preliminary warning, the CANape window is displayed.

You can now configure the target computer and the loaded real-time application as a
Vector CANape device (see “Configuring the Model for Vector CANape” on page 2-4).

Configuring the Vector CANape Device

This procedure describes how to configure the Vector CANape Device to work with your
real-time application. It assumes the following:

• You have created a new Vector CANape project to associate with a particular real-
time application. If you have not yet done so, see “Creating a New Vector CANape
Project” on page 2-5.

• You have set up, built, and downloaded your model. If you have not yet done so, see
“Setting Up and Building the Model” on page 2-4.

1 If you have not yet started your new Vector CANape project, start it now.

The Vector CANape window is displayed.
2 In the CANape window, click Device > Device configuration.

The device configuration window is displayed.
3 In the device configuration window, click New.
4 In Device Name, enter a name for the device to describe your real-time application.

For example, type

SimulinkRealTime

Add the required comments.
5 Click Next.
6 From the driver-type menu list, select XCP.
7 Click Driver settings.

The XCP driver settings window is displayed.
8 In the Transport layer pane, from the Interface menu list, select TCP.

 Configuring the Model for Vector CANape

2-7

9 In the Transport layer pane, click Configuration.
10 In the Host field, enter the IP address of your target computer.

This is the target computer to which you have downloaded the real-time application.
11 Set the port number to 5555.
12 Click OK.
13 If you have Vector CANape Version 5.6.32.3 and higher, and you want to use the

Simulink Real-Time software to acquire event driven data:

a In the Driver pane of the XCP driver settings window, click Extended driver
settings.

b Set the ODT_ENTRY_ADDRESS_OPT_DISABLED parameter to Yes.

With this setting, events that are generated in the Simulink Real-Time
environment will be based on the model base sample time. For example, a
sample time of 0.001 seconds will appear as 100 milliseconds.

c Click OK.
14 In the XCP driver settings window, verify the connection to the target computer by

clicking Test connection. This command succeeds only if the target computer is
running and connected to exactly one development computer.

15 Click OK.

The Device dialog is displayed.
16 Click Next.

Do not exit the dialog.

You can now configure the location of the real-time application A2L (ASAP2) file for
the CANape database. See “Configuring the Location of the A2L (ASAP2) File” on page
2-7.

If you want to load a new real-time application, you must close Vector CANape, download
a new real-time application through the MATLAB interface, then restart Vector CANape.

Configuring the Location of the A2L (ASAP2) File

Use this procedure to configure the location of the real-time application A2L (ASAP2) file
for Vector CANape. This procedure assumes that you have already configured the Vector
CANape device and are still in the device configuration dialog.

2 Vector CANape Support

2-8

1 Clear Automatic detection of the database name.
2 At the Database name parameter, click Browse.

The Select database dialog box for device SimulinkRealTime is displayed.
3 Browse to the folder that contains the A2L (ASAP2) file for the real-time application.

This might be the folder in which you built the real-time application, or it might be
the folder you specified while configuring the real-time application.

4 Select the A2L (ASAP2) file. Click Open.

A dialog requests confirmation of ASAP2 settings.
5 Click Yes.
6 Click Next.
7 Click Next.
8 Click Next.
9 Click OK.
10 You have completed the configuration of Vector CANape for the Simulink Real-Time

software environment.

You can now monitor and control your Simulink Real-Time system. The CANape
database should be populated with a comprehensive list of real-time application signals
and parameters that are available. See “Event Mode Data Acquisition” on page 2-10.

During real-time application changes, you might need to manually reload the A2L
(ASAP2) that is generated by the Simulink Real-Time build process. You can do this from
the CANape Database editor.

Providing A2L (ASAP2) Files for Vector CANape

This topic assumes that:

• You have set up and built your model to generate data for Vector CANape. If you have
not yet done so, see “Setting Up and Building the Model” on page 2-4.

• You have created a Vector CANape project folder and know the name of that project
folder.

To enable Vector CANape to load the A2L (ASAP2) file for the model xpcosc:

 Configuring the Model for Vector CANape

2-9

1 In a DOS window, change folder to the one that contains the A2L (ASAP2) file from
the previous procedure. For example:

cd D:\work\xpc

2 Look for and copy the A2L (ASAP2) file to your Vector CANape project folder. For
example:

copy xpcosc.a2l C:\MyProject

Vector CANape automatically loads the real-time application A2L (ASAP2) file when it
connects to the target computer.

2 Vector CANape Support

2-10

Event Mode Data Acquisition

In this section...

“Guidelines” on page 2-10
“Limitations” on page 2-10

Guidelines

To acquire event mode data rather than polling data, note the following guidelines:

• Set the priority of the xcpserver block to the lowest possible. See suggested priority
values in “Setting Up and Building the Model” on page 2-4.

• The Simulink Real-Time software generates events at the base sample rate; this
execution rate is the fastest possible. If you are tracing a signal that is updated at
a slower rate than the base sample rate, you must decimate the data to match the
actual execution. (The Simulink Real-Time software generates the event name with
the ASAP2 generation during model code generation.)

• You can associate signals with the event generation through the Vector CANape
graphical user interface.

See the Vector CANape documentation for further details on associating events with
signals.

Limitations

The event mode data acquisition has the following limitations:

• Every piece of data that the Simulink Real-Time software adds to the event list slows
down the real-time application. The amount of data that you can observe depends on
the model sample time and the speed of the target computer. It is possible to overload
the target computer CPU to the point where data integrity is reduced.

• You can only trace signals and scalar parameters. You cannot trace vector
parameters.

3

Incorporating Fortran S-Functions

• “Fortran S-Functions” on page 3-2
• “Fortran Atmosphere Model” on page 3-4

3 Incorporating Fortran S-Functions

3-2

Fortran S-Functions

The Simulink Real-Time product supports Fortran in Simulink models using S-functions.
For more details, see “Create Level-2 Fortran S-Functions” and “Port Legacy Code”.

In this section...

“Prerequisites” on page 3-2
“Simulink Demos Folder” on page 3-2
“Steps to Incorporate Fortran” on page 3-3

Prerequisites

You must have Simulink Real-Time Version 1.3 or later to use Fortran for real-time
applications. The Simulink Real-Time product supports the Fortran compiler(s) listed
here:

http://www.mathworks.com/support/compilers/current_release/

Simulink Demos Folder

The Simulink demos folder contains a tutorial and description on how to incorporate
Fortran code into a Simulink model using S-functions. To access the tutorial and
description,

1 In the MATLAB Command Window, type

demos

A list of MATLAB products appears on the left side of the MATLAB Online Help
window.

2 From the left side of the window, select Simulink > Demos > Modeling Features.

A list of Simulink examples appears.
3 Click Custom Code and Hand Coded Blocks using the S-function API.

The associated Simulink examples page opens.
4 Click Open this model.

http://www.mathworks.com/support/compilers/current_release/

 Fortran S-Functions

3-3

S-function examples are displayed.
5 Double-click the Fortran S-functions block.

Fortran S-functions and associated templates appear.

Steps to Incorporate Fortran

This topic lists the general steps to incorporate Fortran code into a real-time application.
Detailed commands follow in the accompanying examples.

1 Using the Fortran compiler, compile the Fortran code (subroutines (*.f)). You will
need to specify particular compiler options.

2 Write a Simulink C-MEX wrapper S-function. This wrapper S-function calls one or
more of the Fortran subroutines in the compiled Fortran object code from step 1.

3 Use the mex function to compile this C-MEX S-function using a Microsoft® Visual C+
+® compiler. Define several Fortran run-time libraries to be linked in.

This step creates the Simulink S-function MEX-file.
4 Run a simulation C-MEX file with the Simulink software to validate the compiled

Fortran code and wrapper S-function.
5 Copy the relevant Fortran run-time libraries to the real-time application build

folder.
6 Define the Fortran libraries, and the Fortran object files from step 1, in the Simulink

Coder™ dialog box of the Simulink model. You must define these libraries and files
as additional components to be linked in when the real-time application link takes
place.

7 Initiate the Simulink Real-Time specific Simulink Coder build procedure for the
example model. Simulink Coder builds and downloads Simulink Real-Time onto the
target computer.

3 Incorporating Fortran S-Functions

3-4

Fortran Atmosphere Model

This example uses the example Atmosphere model that comes with the Simulink
product. The following procedures require you to know how to write Fortran code
according to Simulink and Simulink Real-Time software requirements.

Before you start, create a Simulink Real-Time Simulink model for the Atmosphere
model. See “Creating a Fortran Atmosphere Model” on page 3-4.

In this section...

“Creating a Fortran Atmosphere Model” on page 3-4
“Compiling Fortran Files” on page 3-5
“Creating a C-MEX Wrapper S-Function” on page 3-6
“Compiling and Linking the Wrapper S-Function” on page 3-10
“Validating the Fortran Code and Wrapper S-Function” on page 3-11
“Preparing the Model for the Real-Time Application Build” on page 3-12
“Building and Running the Real-Time Application” on page 3-13

Creating a Fortran Atmosphere Model

To create a Simulink Real-Time Atmosphere model in Fortran, you need to add a
Simulink Real-Time Scope block to the sfcndemo_atmos model. Perform this procedure
if you do not already have a Simulink Real-Time Atmosphere model for Fortran.

1 From the MATLAB window, change folder to the working folder, for example,
xpc_fortran_test.

2 Type

sfcndemo_atmos

The sfcndemo_atmos model is displayed.
3 Add a Simulink Real-Time Scope block of type Target.
4 Connect this Scope block to the Tamb, K signal.

The model sfcndemo_atmos should look like the figure shown.

 Fortran Atmosphere Model

3-5

5 Double-click the target Scope block.
6 From the Scope mode parameter, choose Graphical rolling.
7 For the Number of samples parameter, enter 240.
8 Click Apply, then OK.
9 Double-click the Sine Wave block.
10 For the Sample time parameter, enter 0.05.
11 Click OK.
12 From the File menu, click Save as. Browse to your current working folder,

for example, xpc_fortran_test. Enter a filename. For example, enter
fortran_atmos_xpc and then click Save.

Your next task is to compile Fortran code. See “Compiling Fortran Files” on page
3-5.

Compiling Fortran Files

To access the files for this example, in the Command Window, type:

cd(fullfile(matlabroot,'toolbox','simulink','simdemos',...

 'simfeatures','srcFortran'));

3 Incorporating Fortran S-Functions

3-6

1 In the Command Window, copy the file sfun_atmos_sub.F into your Fortran
working folder, for example, xpc_fortran_test. This is sample Fortran code that
implements a subroutine for the Atmosphere model.

2 From Fortran_compiler_dir\lib\ia32, copy the following files to the working
folder:

• libifcore.lib

• libifcoremd.lib

• ifconsol.lib

• libifportmd.lib

• libifport.lib

• libmmd.lib

• libm.lib

• libirc.lib

• libmmt.lib

• libifcoremt.lib

• svml_disp.lib

3 From a DOS prompt, change folder to the working folder and create the object file.
For example:

ifort /fpp /Qprec /c /nologo /MT /fixed /iface:cref -Ox sfun_atmos_sub.F

Your next task is to create a wrapper S-function. See “Creating a C-MEX Wrapper S-
Function” on page 3-6.

Creating a C-MEX Wrapper S-Function

This topic describes how to create a C-MEX wrapper S-function for the Fortran code
in sfun_atmos_sub.f. This function is a level 2 S-function. It incorporates existing
Fortran code into a Simulink S-function block and lets you execute Fortran code from the
Simulink software. Before you start:

• Compile your Fortran code. See “Compiling Fortran Files” on page 3-5.
• Become familiar with the guidelines and calling conventions for Simulink Fortran

level 2 S-functions (see “Create Level-2 Fortran S-Functions”).

 Fortran Atmosphere Model

3-7

• Implement the required callback functions using standard functions to access the
fields of the S-function's simulation data structure,SimStruct (see “Templates for C
S-Functions”).

The following procedure outlines the steps to create a C-MEX wrapper S-function to work
with sfun_atmos_sub.f. It uses the template file sfuntmpl_gate_fortran.c.

Note: This topic describes how to create a level 2 Fortran S-function for the
fortran_atmos_xpc model. This file is also provided in sfun_atmos.c.

1 Copy the file sfuntmpl_gate_fortran.c to your working folder.

This is your C-MEX file for calling into your Fortran subroutine. It works with a
simple Fortran subroutine.

2 With a text editor of your choice, open sfuntmpl_gate_fortran.c.
3 Inspect the file. This is a self-documenting file.

This file contains placeholders for standard Fortran level 2 S-functions, such as the
S-function name specification and Simulink callback methods.

4 In the #define S_FUNCTION_NAME definition, add the name of your S-function. For
example, edit the definition line to look like

#define S_FUNCTION_NAME sfun_atmos

5 In the file, read the commented documentation for fixed-step and variable-step fixed
algorithm support.

6 Delete or comment out the code for fixed-step and variable-step fixed-algorithm
support. You do not need these definitions for this example.

7 Find the line that begins extern void nameofsub_. Specify the function prototype
for the Fortran subroutine. For the sfun_atmos_sub.obj executable, the Fortran
subroutine is atmos_. Replace

extern void nameofsub_(float *sampleArgs, float *sampleOutput);

with

extern void atmos_(float *falt, float *fsigma, float *fdelta, float *ftheta);

Enter a #if defined/#endif statement like the following for Windows® compilers.

3 Incorporating Fortran S-Functions

3-8

#ifdef _WIN32

#define atmos_ atmos

#endif

8 Add a typedef to specify the parameters for the block. For example,

typedef enum {T0_IDX=0, P0_IDX, R0_IDX, NUM_SPARAMS } paramIndices;

#define T0(S) (ssGetSFcnParam(S, T0_IDX))

#define P0(S) (ssGetSFcnParam(S, P0_IDX))

#define R0(S) (ssGetSFcnParam(S, R0_IDX))

9 Use the mdlInitializeSizes callback to specify the number of inputs, outputs,
states, parameters, and other characteristics of the S-function. S-function callback
methods use SimStruct functions to store and retrieve information about an S-
function. Be sure to specify the temperature, pressure, and density parameters.
For example,

static void mdlInitializeSizes(SimStruct *S)

{

 ssSetNumSFcnParams(S,NUM_SPARAMS); /* expected number */

#if defined(MATLAB_MEX_FILE)

 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) goto EXIT_POINT;

#endif

 {

 int iParam = 0;

 int nParam = ssGetNumSFcnParams(S);

 for (iParam = 0; iParam < nParam; iParam++)

 {

 ssSetSFcnParamTunable(S, iParam, SS_PRM_SIM_ONLY_TUNABLE);

 }

 }

 ssSetNumContStates(S, 0);

 ssSetNumDiscStates(S, 0);

 ssSetNumInputPorts(S, 1);

 ssSetInputPortWidth(S, 0, 3);

 ssSetInputPortDirectFeedThrough(S, 0, 1);

 ssSetInputPortRequiredContiguous(S, 0, 1);

 ssSetNumOutputPorts(S, 3);

 ssSetOutputPortWidth(S, 0, 3); /* temperature */

 ssSetOutputPortWidth(S, 1, 3); /* pressure */

 ssSetOutputPortWidth(S, 2, 3); /* density */

#if defined(MATLAB_MEX_FILE)

EXIT_POINT:

#endif

 return;

}

 Fortran Atmosphere Model

3-9

10 Use the mdlInitializeSampleTimes callback to specify the sample rates at which
this S-function operates.

static void mdlInitializeSampleTimes(SimStruct *S)

{

 ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);

 ssSetOffsetTime(S, 0, 0.0);

 ssSetModelReferenceSampleTimeDefaultInheritance(S);

}

11 Use the mdlOutputs callback to compute the signals that this block emits.

static void mdlOutputs(SimStruct *S, int_T tid)

{

 double *alt = (double *) ssGetInputPortSignal(S,0);

 double *T = (double *) ssGetOutputPortRealSignal(S,0);

 double *P = (double *) ssGetOutputPortRealSignal(S,1);

 double *rho = (double *) ssGetOutputPortRealSignal(S,2);

 int w = ssGetInputPortWidth(S,0);

 int k;

 float falt, fsigma, fdelta, ftheta;

 for (k=0; k<w; k++) {

 /* set the input value */

 falt = (float) alt[k];

 /* call the Fortran routine using pass-by-reference */

 atmos_(&falt, &fsigma, &fdelta, &ftheta);

 /* format the outputs using the reference parameters */

 T[k] = mxGetScalar(T0(S)) * (double) ftheta;

 P[k] = mxGetScalar(P0(S)) * (double) fdelta;

 rho[k] = mxGetScalar(R0(S)) * (double) fsigma;

 }

}

12 Use the mdlTerminate callback to perform the actions required at termination of
the simulation. Even if you do not have require such operations, you must include a
stub for this callback.

static void mdlTerminate(SimStruct *S)

{

}

13 In the file, read the commented documentation for the following callbacks:

3 Incorporating Fortran S-Functions

3-10

• mdlInitalizeConditions — Initializes the state vectors of this S-function.
• mdlStart — Initializes the state vectors of this S-function. This function is called

once at the start of the model execution.
• mdlUpdate — Updates the states of a block.

These are optional callbacks that you can define for later projects. You do not need to
specify these callbacks for this example.

14 Delete or comment out the code for these callbacks.
15 Save the file under another name. For example, save this file as sfun_atmos.c. Do

not overwrite the template file.
16 Copy the file sfun_atmos.c into your Fortran working folder, for example,

xpc_fortran_test.

Your next task is to compile and link the wrapper S-function. See “Compiling and
Linking the Wrapper S-Function” on page 3-10.

Compiling and Linking the Wrapper S-Function

This topic describes how to create (compile and link) a C-MEX S-function from the
sfun_atmos.c file. Before you start, copy the following files into the working folder,
xpc_fortran_test. (You should have copied these files when you performed the steps
in “Compiling Fortran Files” on page 3-5.)

• libifcore.lib

• libifcoremd.lib

• ifconsol.lib

• libifportmd.lib

• libifport.lib

• libmmd.lib

• libm.lib

• libirc.lib

• libmmt.lib

• libifcoremt.lib

• svml_disp.lib

 Fortran Atmosphere Model

3-11

Use the mex command with a C/C++ compiler such as Microsoft Visual C++ Version 6.0.

This topic assumes that you have created a C-MEX wrapper S-function. See “Creating a
C-MEX Wrapper S-Function” on page 3-6.

Invoking the mex command requires you to compile the wrapper C file sfun_atmos.c.
Be sure to link in the following:

• Compiled Fortran code: sfun_atmos_sub.obj
• Fortran run-time libraries to resolve external function references and provide the

Fortran run-time environment

When you are ready, mex the code. For example
mex -v LINKFLAGS="$LINKFLAGS /NODEFAULTLIB:libcmt.lib libifcoremd.lib

ifconsol.lib libifportmd.lib libmmd.lib libirc.lib svml_disp.lib" sfun_atmos.c

sfun_atmos_sub.obj

Note: The command and all its parameters must be on one line.

This command compiles and links the sfun_atmos_sub.c file. It creates the
sfun_atmos.mex file in the same folder.

Your next task is to validate the Fortran code and wrapper S-function. See “Validating
the Fortran Code and Wrapper S-Function” on page 3-11.

Validating the Fortran Code and Wrapper S-Function

Validate the generated C-MEX S-function, sfun_atmos.mex. Bind the C-MEX S-
function to an S-function block found in the Simulink block library. You can mask the S-
function block like other S-function blocks to give it a specific dialog box.

This topic assumes that you have compiled and linked a wrapper S-function. See
“Compiling and Linking the Wrapper S-Function” on page 3-10.

The Atmosphere model example has a Simulink model associated with it.

1 In the MATLAB window, type

fortran_atmos_xpc

3 Incorporating Fortran S-Functions

3-12

This opens the Simulink model associated with the Atmosphere model. This model
includes an S-function block bound to sfun_atmos.mex.

2 Select Simulation > Run to simulate the model.
3 Examine the behavior of the Atmosphere model by looking at the signals traced by

the Scope block.

Your next task is to prepare the model to build a real-time application. See “Preparing
the Model for the Real-Time Application Build” on page 3-12.

Preparing the Model for the Real-Time Application Build

Before you build the Atmosphere model for Simulink Real-Time, define the following
build dependencies:

• The build procedure has access to sfun_atmos.sub.obj for the link stage.
• The build procedure has access to the Fortran run-time libraries (see “Compiling and

Linking the Wrapper S-Function” on page 3-10) for the link stage.

This topic assumes that you have validated the Fortran code and wrapper S-function (see
“Validating the Fortran Code and Wrapper S-Function” on page 3-11).

1 In the MATLAB window, type

fortran_atmos_xpc

This opens the Simulink model associated with the Atmosphere model.
2 In the Simulink model, click Simulation > Model Configuration Parameters.

The Configuration Parameters dialog box appears.
3 In the left pane, click the Code Generation node.

The Code Generation pane opens.
4 In the Target selection section, click the Browse button at the System target file

list.
5 Click slrt.tlc.
6 In the Make command field, replace make_rtw with one for the Fortran compiler.

make_rtw S_FUNCTIONS_LIB="..\sfun_atmos_sub.obj ..\libifcoremt.lib ..\libmmt.lib

..\ifconsol.lib ..\libifport.lib ..\libirc.lib ..\svml_disp.lib"

 Fortran Atmosphere Model

3-13

Note: The command and all its parameters must be on one line.
7 Click Apply.
8 Click OK.
9 From the File menu, click Save.

This command requires that the real-time application build folder be the current folder
(one level below the working folder, xpc_fortran_test). Because of this, all additional
dependency designations must start with ..\.

Specify all Fortran object files if your model (S-Function blocks) depends on more than
one file. For this example, you specify the run-time libraries only once.

Your next task is to build and run the real-time application. See “Building and Running
the Real-Time Application” on page 3-13 .

Building and Running the Real-Time Application

This topic assumes that you have prepared the model to build a Simulink Real-Time
application. See “Preparing the Model for the Real-Time Application Build” on page
3-12.

Build and run the real-time application as usual. Be sure that you have defined Microsoft
Visual C++ as the Simulink Real-Time C compiler using slrtsetCC.

After the build procedure succeeds, Simulink Real-Time automatically downloads the
real-time application to the target computer. The Atmosphere model already contains a
Simulink Real-Time Scope block. This allows you to verify the behavior of the model. You
will be able to compare the signals shown on the target display with the signals obtained
earlier by the Simulink simulation run (see “Validating the Fortran Code and Wrapper S-
Function” on page 3-11).

Real-Time Application Setup

4

Real-Time Application Environment

• “Simulink Real-Time Options Configuration Parameters” on page 4-3
• “Simulink Real-Time Explorer Basic Operations” on page 4-4
• “Default Target Computers” on page 4-6
• “Save Environment Properties” on page 4-7
• “Command-Line C Compiler Configuration” on page 4-8
• “Command-Line Setup” on page 4-9
• “Command-Line Ethernet Link Setup” on page 4-10
• “Command-Line PCI Bus Ethernet Setup” on page 4-11
• “PCI Bus Ethernet Protocol Hardware” on page 4-12
• “Command-Line PCI Bus Ethernet Settings” on page 4-13
• “Command-Line USB-to-Ethernet Setup” on page 4-15
• “USB-to-Ethernet Protocol Hardware” on page 4-16
• “Command-Line USB-to-Ethernet Settings” on page 4-17
• “Command-Line ISA Bus Ethernet Setup” on page 4-19
• “ISA Bus Ethernet Protocol Hardware” on page 4-20
• “Command-Line ISA Bus Ethernet Settings” on page 4-22
• “Ethernet Card Selection by Index” on page 4-24
• “Command-Line Ethernet Card Selection by Index” on page 4-26
• “Command-Line Serial Link Setup” on page 4-28
• “RS-232 Protocol Hardware” on page 4-29
• “Command-Line RS-232 Settings” on page 4-30
• “Command-Line Target Computer Settings” on page 4-31
• “Command-Line Target Boot Methods” on page 4-34
• “Command-Line Kernel Creation Prechecks” on page 4-35
• “Command-Line Network Boot Method” on page 4-36

4 Real-Time Application Environment

4-2

• “Command-Line CD/DVD Boot Method” on page 4-38
• “Command-Line DOS Loader Boot Method” on page 4-39
• “Command-Line Removable Disk Boot Method” on page 4-41
• “Command-Line Standalone Boot Method” on page 4-43
• “Command-Line Standalone Settings” on page 4-44

 Simulink Real-Time Options Configuration Parameters

4-3

Simulink Real-Time Options Configuration Parameters

The configuration parameters Simulink Real-Time Options node appears when you
select one of the Simulink Real-Time settings for the System target file parameter in
the Code Generation pane of the Configuration Parameters dialog box:

• slrt.tlc

Generate system target code for Simulink Real-Time.
• slrtert.tlc

Generate system target code for a Simulink Real-Time using the required Embedded
Coder® software.

The Simulink Real-Time Options node allows you to specify how the software
generates the real-time application. Before you create (build) a real-time application, you
might need to enter and select these options. The default values work well for real-time
application creation.

Tip If you set up your model to Simulink Real-Time Embedded Coder (slrtert.tlc),
you can create a custom Code Replacement Library (CRL). The CRL must be based upon
the Simulink Real-Time BLAS (XPC_BLAS). For more on CRLs, see:

• “Code Replacement Libraries”
• “Code You Can Replace From Simulink Models”
• “Choose a Code Replacement Library”

For more information on the Simulink Real-Time Options node, see “Configuration
Parameters”.

4 Real-Time Application Environment

4-4

Simulink Real-Time Explorer Basic Operations

Simulink Real-Time Explorer is a graphical user interface for the Simulink Real-Time
product. It runs on your development computer and provides a single point of contact for
most interactions.

Note: Do not use Simulink external mode while Simulink Real-Time Explorer is running.
Use only one interface or the other.

Through Simulink Real-Time Explorer, you can perform basic operations, such as:

• Add and configure target computers for the Simulink Real-Time software, up to 64
target computers.

• Create boot DVDs or CDs, removable drives, and network boot images for particular
target computers.

• Connect the target computers for your Simulink Real-Time system to the development
computer.

• Download a prebuilt real-time application, or DLM, to a target computer.
• Start and stop the real-time application that has been downloaded to the target.
• Add and remove host, target, or file scopes associated with the downloaded real-time

application.
• Monitor signals.
• Add or remove signals associated with Simulink Real-Time scopes.
• Start and stop scopes.
• Adjust parameter values for the signals while the real-time application is running.
• Export a Simulink Real-Time Explorer configuration as a separate executable.

To start Simulink Real-Time Explorer, type slrtexplr in the MATLAB Command
Window.

There are four major panes in Simulink Real-Time Explorer:

• Targets pane — The top-left Targets pane lists the targets in your Simulink Real-
Time hierarchy. Under each target are nodes representing the properties and (if
accessible) the file system of the target.

 Simulink Real-Time Explorer Basic Operations

4-5

• Applications pane — The bottom left Applications pane lists the real-time
applications running on the targets. Under each application are nodes representing
the properties, signal and parameter groupings, and (if available) the model hierarchy
of the application.

• Scopes pane — The top right Scopes pane lists the scopes defined on the active real-
time applications, whether predefined or dynamically created.

• Output pane — The bottom center Output pane receives status messages from
Simulink Real-Time Explorer.

The top center pane displays under separate tabs information associated with nodes
selected in one of the other panes.

4 Real-Time Application Environment

4-6

Default Target Computers

When you start Simulink Real-Time Explorer for the first time, it opens a default node,
TargetPC1. You can configure this node for a target computer, then connect the node to
the target computer. If you later build a real-time application from a Simulink model, the
Simulink Real-Time software builds and downloads that application the default target
computer.

You can add other target computer nodes and designate one of them as the default target
computer instead of the first one. To set a target computer node as the default, right-
click that node and select Set As Default Target from the context-sensitive menu. The
default target computer node is boldface.

If you delete a default target computer node, the target computer node preceding it
becomes the default target computer node. The last target computer node becomes the
default target computer node and cannot be deleted.

If you want to use the Simulink Real-Time command-line interface to work with the
target computer, you must indicate which target computer the command is interacting
with. If you do not identify a particular target computer, the Simulink Real-Time
software uses the default target computer.

TheSimulinkRealTime target computer environment, manages collective and
individual target computer environments. See “Command-Line Setup” on page 4-9.

When you call SimulinkRealTime.getTargetSettings without arguments (for
example, env = SimulinkRealTime.getTargetSettings), the constructor gets the
target environment settings for the default target computer.

When you instantiate the target object constructor slrt without arguments (for
example, tg = slrt), the constructor uses the link properties of the default target
computer to communicate with the target computer.

 Save Environment Properties

4-7

Save Environment Properties

The Simulink Real-Time Explorer environment consists of the property settings you
define for the Targets pane. You can save your settings for the next session.

1 In the MATLAB Command Window, type slrtexplr.
2 Set properties in the Targets pane.

After you change one or more properties and press Enter, the Save icon and menu
item are available.

3
Click the Save icon in the toolbar.

If you do not explicitly save the environment settings, Simulink Real-Time Explorer
asks on exit if you want to save them.

4 Real-Time Application Environment

4-8

Command-Line C Compiler Configuration

To configure the development computer for the C compiler using MATLAB language, use
this procedure.

The command mex -setup sets the default compiler for Simulink Real-Time builds,
provided the MEX compiler is a supported Microsoft compiler. Use slrtsetCC -setup
only if you need to specify different compilers for MEX and Simulink Real-Time.

1 Install a supported C compiler on the development computer.

For more about the Simulink Real-Time C compiler requirements, see http://
www.mathworks.com/support/compilers/current_release/

2 In the MATLAB Command Window, type:

slrtsetCC setup

The function queries the development computer for C compilers that the Simulink
Real-Time environment supports. It returns output like the following:
Select your compiler for Simulink Real-Time.

[1] Microsoft Visual C++ Compilers 2008 Professional Edition (SP1) in

 c:\Program Files (x86)\Microsoft Visual Studio 9.0

[2] Microsoft Visual C++ Compilers 2010 Professional in

 C:\Program Files (x86)\Microsoft Visual Studio 10.0

[0] None

Compiler:

3 At the Compiler prompt, enter the number for the compiler that you want to use.
For example, 2.

The function verifies that you have selected the required compiler:

Verify your selection:

Compiler: Microsoft Visual C++ Compilers 2010 Professional

Location: C:\Program Files (x86)\Microsoft Visual Studio 10.0

Are these correct [y]/n?

4 Type y or press Enter to verify the selection.

http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/compilers/current_release/

 Command-Line Setup

4-9

Command-Line Setup

Use the following procedures to configure single- and multiple-target systems.

You must have installed and configured a C compiler and verified the target computer
BIOS settings. If not, see:

• “Command-Line C Compiler Configuration” on page 4-8.
• “BIOS Settings”

1 “Command-Line Ethernet Link Setup” on page 4-10
2 “Command-Line Serial Link Setup” on page 4-28
3 “Command-Line Target Computer Settings” on page 4-31
4 “Command-Line Target Boot Methods” on page 4-34

The next task is “Run Confidence Test on Configuration”.

4 Real-Time Application Environment

4-10

Command-Line Ethernet Link Setup

On the development computer, set the properties that your development computer
requires to maintain Ethernet links with target computers. For a serial link, see
“Command-Line Serial Link Setup” on page 4-28.

• “Command-Line PCI Bus Ethernet Setup” on page 4-11
• “Command-Line USB-to-Ethernet Setup” on page 4-15

The next task is “Command-Line Target Computer Settings” on page 4-31.

 Command-Line PCI Bus Ethernet Setup

4-11

Command-Line PCI Bus Ethernet Setup

If your target computer has a PCI bus, use an Ethernet card for the PCI bus. The PCI
bus has a faster data transfer rate than the other bus types.

Follow these procedures:

1 “PCI Bus Ethernet Protocol Hardware” on page 4-12
2 “Command-Line PCI Bus Ethernet Settings” on page 4-13

The next task is “Command-Line Target Computer Settings” on page 4-31.

4 Real-Time Application Environment

4-12

PCI Bus Ethernet Protocol Hardware

To install PCI bus Ethernet protocol interface hardware:

1 Acquire a supported PCI bus Ethernet card.

For the most current Ethernet link requirements, see https://
www.mathworks.com/products/simulink-real-time/supported/xpc-

target-supported-ethernet-chipsets.pdf.

If you want to start the target computer from the network, the Ethernet adapter
must be compatible with the Preboot eXecution Environment (PXE)
specification.

2 Turn off your target computer.
3 If the target computer already has an unsupported Ethernet card, remove the card.
4 Plug the supported Ethernet card into a free PCI bus slot.
5 Assign a static IP address to the target computer Ethernet card.

Although the target computer Ethernet card must have a static IP address,
the development computer network adapter card can have a Dynamic Host
Configuration Protocol (DHCP) address and can be accessed from the network. When
using the product with TCP/IP, you must configure the DHCP server to reserve
static IP addresses to prevent these addresses from being assigned to other systems.

6 Connect your target computer Ethernet card to your LAN using an unshielded
twisted-pair (UTP) cable.

You can directly connect your computers using a crossover UTP cable with RJ45
connectors. Both computers must have static IP addresses. If the development
computer has a second network adapter card, that card can have a DHCP address.

The next task is “Command-Line PCI Bus Ethernet Settings” on page 4-13.

https://www.mathworks.com/products/simulink-real-time/supported/xpc-target-supported-ethernet-chipsets.pdf
https://www.mathworks.com/products/simulink-real-time/supported/xpc-target-supported-ethernet-chipsets.pdf
https://www.mathworks.com/products/simulink-real-time/supported/xpc-target-supported-ethernet-chipsets.pdf

 Command-Line PCI Bus Ethernet Settings

4-13

Command-Line PCI Bus Ethernet Settings
After you install the PCI bus Ethernet card, before you can build and download a real-
time application, you must specify the environment properties for the development and
target computers.

Before you start, ask your system administrator for the following information for your
target computer:

• IP address
• Subnet mask address
• Port number (optional)
• Gateway (optional)

Use the following procedure for target TargetPC1:

1 At the MATLAB prompt, create an environment object for this target computer and
make it the default target:

env = SimulinkRealTime.addTarget('TargetPC1');

setAsDefaultTarget(env);

All other settings will be made to this object.
2 Set the communication type to 'TcpIp':

env.HostTargetComm='TcpIp';

3 Set the IP address for your target computer. For example:

env.TcpIpTargetAddress = '10.10.10.15';

4 Set the subnet mask address of your LAN. For example:

env.TcpIpSubNetMask = '255.255.255.0';

5 Set the TCP/IP port (optional) to a value higher than '20000' and less than
'65536'. For example:

env.TcpIpTargetPort = '22222';

This property is set by default to '22222', a value higher than the reserved area
(telnet, ftp, and so on).

6 Set the TCP/IP gateway (optional) to the gateway required to access the target
computer. For example:

4 Real-Time Application Environment

4-14

env.TcpIpGateway = '255.255.255.255';

This property is set by default to '255.255.255.255', which means that you do
not use a gateway to connect to your target computer. If you connect your computers
with a crossover cable, leave this property as '255.255.255.255'.

If you communicate with the target computer from within your LAN, you might
not need to change this setting. If you communicate from a development computer
located in a LAN different from your target computer (especially via the Internet),
you must define a gateway and enter its IP address in this box.

7 Set the bus type to 'PCI'.

env.TcpIpTargetBusType = 'PCI';

8 Set the target driver to one of '3C90x', 'I8254x', 'I82559', 'NS83815',
'R8139', 'R8168', 'Rhine', 'RTLANCE', or 'Auto' (the default).

env.TcpIpTargetDriver = 'Auto';

For target driver 'Auto', the software determines the target computer TCP/IP
driver from the card installed on the target computer. If no supported Ethernet card
is installed in your target computer, the software returns an error.

9 If the target computer has multiple Ethernet cards, follow the procedure in
“Command-Line Ethernet Card Selection by Index” on page 4-26.

Repeat this procedure as required for each target computer.

The next task is “Command-Line Target Computer Settings” on page 4-31.

 Command-Line USB-to-Ethernet Setup

4-15

Command-Line USB-to-Ethernet Setup

If the target computer has a USB 2.0 port but no supported PCI or ISA Ethernet card,
use a USB-to-Ethernet adapter.

Follow these procedures:

1 “USB-to-Ethernet Protocol Hardware” on page 4-16
2 “Command-Line USB-to-Ethernet Settings” on page 4-17

The next task is “Command-Line Target Computer Settings” on page 4-31.

4 Real-Time Application Environment

4-16

USB-to-Ethernet Protocol Hardware

To install USB-to-Ethernet protocol interface hardware:

1 Acquire a supported USB-to-Ethernet adapter.

For the most current Ethernet link requirements, see https://
www.mathworks.com/products/simulink-real-time/supported/xpc-

target-supported-ethernet-chipsets.pdf.

If you want to start the target computer from the network, the Ethernet adapter
must be compatible with the Preboot eXecution Environment (PXE)
specification.

2 Turn off your target computer.
3 Plug an Ethernet-to-USB adapter into the USB port on the target.
4 Connect the Ethernet-to-USB adapter to your LAN using an unshielded twisted-pair

(UTP) cable.
5 Assign a static IP address to the target computer USB-to-Ethernet adapter.

Although the target computer Ethernet adapter must have a static IP address, the
development computer network adapter can have a Dynamic Host Configuration
Protocol (DHCP) address and can be accessed from the network. When using the
product with TCP/IP, you must configure the DHCP server to reserve static IP
addresses to prevent these addresses from being assigned to other systems.

6 Connect your target computer Ethernet adapter to your LAN using an unshielded
twisted-pair (UTP) cable.

You can directly connect your computers using a crossover UTP cable with RJ45
connectors. Both computers must have static IP addresses. If the development
computer has a second network adapter, that adapter can have a DHCP address.

Do not connect the development computer USB port to the target computer USB port
using a USB cable. A USB-to-Ethernet adapter plugged into the target computer
USB port behaves like an Ethernet card installed on the target computer.

The next task is “Command-Line USB-to-Ethernet Settings” on page 4-17.

https://www.mathworks.com/products/simulink-real-time/supported/xpc-target-supported-ethernet-chipsets.pdf
https://www.mathworks.com/products/simulink-real-time/supported/xpc-target-supported-ethernet-chipsets.pdf
https://www.mathworks.com/products/simulink-real-time/supported/xpc-target-supported-ethernet-chipsets.pdf

 Command-Line USB-to-Ethernet Settings

4-17

Command-Line USB-to-Ethernet Settings
After you install the USB-to-Ethernet adapter, before you can build and download a real-
time application, you must specify the environment properties for the development and
target computers.

Before you start, ask your system administrator for the following information for your
target computer:

• IP address
• Subnet mask address
• Port number (optional)
• Gateway (optional)

Use the following procedure for target TargetPC1:

1 At the MATLAB prompt, create an environment object for this target computer and
make it the default target:

env = SimulinkRealTime.addTarget('TargetPC1');

setAsDefaultTarget(env);

All other settings will be made to this object.
2 Set the communication type to 'TcpIp':

env.HostTargetComm='TcpIp';

3 Set the IP address for your target computer. For example:

env.TcpIpTargetAddress = '10.10.10.15';

4 Set the subnet mask address of your LAN. For example:

env.TcpIpSubNetMask = '255.255.255.0';

5 Set the TCP/IP port (optional) to a value higher than '20000' and less than
'65536'. For example:

env.TcpIpTargetPort = '22222';

This property is set by default to '22222', a value higher than the reserved area
(telnet, ftp, and so on).

6 Set the TCP/IP gateway (optional) to the gateway required to access the target
computer. For example:

4 Real-Time Application Environment

4-18

env.TcpIpGateway = '255.255.255.255';

This property is set by default to '255.255.255.255', which means that you do
not use a gateway to connect to your target computer. If you connect your computers
with a crossover cable, leave this property as '255.255.255.255'.

If you communicate with the target computer from within your LAN, you might
not need to change this setting. If you communicate from a development computer
located in a LAN different from your target computer (especially via the Internet),
you must define a gateway and enter its IP address in this box.

7 Set the bus type to 'USB'.

env.TcpIpTargetBusType = 'USB';

8 Set the target driver to one of 'USBAX772', 'USBAX172', or 'Auto'.

env.TcpIpTargetDriver = 'Auto';

If the target driver is 'Auto', the software sets the driver to 'USBAX772', the
driver most commonly used.

Repeat this procedure as required for each target computer.

The next task is “Command-Line Target Computer Settings” on page 4-31.

 Command-Line ISA Bus Ethernet Setup

4-19

Command-Line ISA Bus Ethernet Setup

Your target computer might not have an available PCI bus slot or USB 2.0 port. In these
cases, use an Ethernet card for an ISA bus.

Note: Ethernet links using ISA bus Ethernet adapters will be removed in a future
release. Use PCI or USB bus adapters instead.

1 “ISA Bus Ethernet Protocol Hardware” on page 4-20
2 “Command-Line ISA Bus Ethernet Settings” on page 4-22

The next task is “Command-Line Target Computer Settings” on page 4-31.

4 Real-Time Application Environment

4-20

ISA Bus Ethernet Protocol Hardware

To install ISA bus Ethernet protocol interface hardware:

Note: Ethernet links using ISA bus Ethernet adapters will be removed in a future
release. Use PCI or USB bus adapters instead.

1 Acquire a supported ISA bus Ethernet card.

For the most current Ethernet links requirements, see https://
www.mathworks.com/products/simulink-real-time/supported/xpc-

target-supported-ethernet-chipsets.pdf.

If you want to start the target computer from the network, the Ethernet adapter
must be compatible with the Preboot eXecution Environment (PXE)
specification.

2 Turn off your target computer.
3 On your ISA bus card, assign an IRQ and I/O-port base address by moving the

jumpers or switches on the card. Write down these settings, because you must enter
them in Simulink Real-Time Explorer.

Set the IRQ line to 5 and the I/O-port base address to around 0x300. If one of these
settings leads to a conflict in your target computer, select another IRQ or I/O-port
base address.

If your ISA bus card does not contain jumpers to set the IRQ line and the base
address, after installation use the utility on the installation disk supplied with your
card to manually assign the IRQ line and base address.

If you use an Ethernet card for an ISA bus within a target computer that has a
PCI bus, after installation you must reserve the chosen IRQ line number for the
Ethernet card in the PCI BIOS. To set up the PCI BIOS, refer to your BIOS setup
documentation.

Do not configure the card as a PnP-ISA device.
4 If the target computer already has an unsupported Ethernet card, remove the card.

Plug the compatible network card into a free ISA bus slot.

https://www.mathworks.com/products/simulink-real-time/supported/xpc-target-supported-ethernet-chipsets.pdf
https://www.mathworks.com/products/simulink-real-time/supported/xpc-target-supported-ethernet-chipsets.pdf
https://www.mathworks.com/products/simulink-real-time/supported/xpc-target-supported-ethernet-chipsets.pdf

 ISA Bus Ethernet Protocol Hardware

4-21

5 Assign a static IP address to the target computer Ethernet card.

Although the target computer Ethernet card must have a static IP address,
the development computer network adapter card can have a Dynamic Host
Configuration Protocol (DHCP) address and can be accessed from the network. When
using the product with TCP/IP, you must configure the DHCP server to reserve
static IP addresses to prevent these addresses from being assigned to other systems.

6 Connect your target computer Ethernet card to your LAN using an unshielded
twisted-pair (UTP) cable.

You can directly connect your computers using a crossover UTP cable with RJ45
connectors. Both computers must have static IP addresses. If the development
computer has a second network adapter card, that card can have a DHCP address.

The next task is “Command-Line ISA Bus Ethernet Settings” on page 4-22.

4 Real-Time Application Environment

4-22

Command-Line ISA Bus Ethernet Settings
After you install the ISA bus Ethernet card, before you can build and download a real-
time application, you must specify the environment properties for the development and
target computers.

Before you start, ask your system administrator for the following information for your
target computer:

• IP address
• Subnet mask address
• Port number (optional)
• Gateway (optional)

Use the following procedure for target TargetPC1:

1 At the MATLAB prompt, create an environment object for this target computer and
make it the default target:

env = SimulinkRealTime.addTarget('TargetPC1');

setAsDefaultTarget(env);

All other settings will be made to this object.
2 Set the communication type to 'TcpIp':

env.HostTargetComm='TcpIp';

3 Set the IP address for your target computer. For example:

env.TcpIpTargetAddress = '10.10.10.15';

4 Set the subnet mask address of your LAN. For example:

env.TcpIpSubNetMask = '255.255.255.0';

5 Set the TCP/IP port (optional) to a value higher than '20000' and less than
'65536'. For example:

env.TcpIpTargetPort = '22222';

This property is set by default to '22222', a value higher than the reserved area
(telnet, ftp, and so on).

6 Set the TCP/IP gateway (optional) to the gateway required to access the target
computer. For example:

 Command-Line ISA Bus Ethernet Settings

4-23

env.TcpIpGateway = '255.255.255.255';

This property is set by default to '255.255.255.255', which means that you do
not use a gateway to connect to your target computer. If you connect your computers
with a crossover cable, leave this property as '255.255.255.255'.

If you communicate with the target computer from within your LAN, you might
not need to change this setting. If you communicate from a development computer
located in a LAN different from your target computer (especially via the Internet),
you must define a gateway and enter its IP address in this box.

7 Set the bus type to 'ISA'.

env.TcpIpTargetBusType = 'ISA';

8 Set the target driver to one of 'NE2000' or 'SMC91C9X'. For example:

env.TcpIpTargetDriver = 'NE2000';

Target driver 'Auto' is not supported for bus type 'ISA'.
9 Set the I/O-port base address and IRQ to values that correspond with the jumper

settings or ROM settings on your ISA bus Ethernet card. For example:

env.TcpIpTargetISAMemPort = '0x300';

env.TcpIpTargetISAIRQ = '5';

Repeat this procedure as required for each target computer.

The next task is “Command-Line Target Computer Settings” on page 4-31.

4 Real-Time Application Environment

4-24

Ethernet Card Selection by Index

If the target computer has multiple Ethernet cards, you must specify which card to use
for the Ethernet link. Use the following procedure to discover the Ethernet index of the
PCI cards on the target computer and to specify which card to use.

Note: For this procedure, you must be able to burn CDs on your development computer
and use Network boot mode for routine target operations.

Use the following procedure for target TargetPC1:

1 At the MATLAB prompt, get the environment object for this target computer and
make it the default target:

env = SimulinkRealTime.getTargetSettings('TargetPC1');

setAsDefaultTarget(env);

All other settings will be made to this object.
2 At the MATLAB prompt, type:

env.ShowHardware = 'on';

3 At the MATLAB prompt, type: slrtexplr.
4 In the Targets pane, expand the target computer node.
5 In the toolbar, click the Target Properties icon .
6 Select Host-to-Target communication and set Target driver to Auto. If you set

Target driver to a specific driver, such as INTEL_I82559, the kernel displays only
information about boards that use that driver.

7 Select Target settings and clear the Graphics mode check box. This setting
causes the kernel to print text only.

8 Select Boot configuration and set Boot mode to CD.
9 Click Create boot disk and follow the prompts to create a new boot disk.
10 Insert the new boot disk and restart the target computer from the computer boot

switch.

After the start is complete, the target monitor displays information about the
Ethernet cards in the target computer, for example :

 Ethernet Card Selection by Index

4-25

index: 0, driver: RTLANCE, Bus: 16, Slot: 7, Func: 0

index: 1, driver: R8139, Bus: 16, Slot: 8, Func: 0

index: 2, driver: I82559, Bus: 16, Slot: 9, Func: 0

You might need to change the boot order from the target computer BIOS to allow
starting from your disk. After the kernel starts with ShowHardware 'on', the
development computer cannot communicate with the target computer.

11 Note the index of the Ethernet card that you want to use for the Ethernet link, for
example, 2.

12 At the MATLAB prompt, type:

env.ShowHardware = 'off';

env.EthernetIndex = '#';

is the index of the Ethernet card, for example, 2.
13 Select Target settings and select the Graphics mode check box.
14 Set Boot mode to Network.
15 Click Create boot disk.
16 Remove the boot disk from the target computer drive and start the target computer

from the computer boot switch.

The kernel selects the specified Ethernet card as the target computer card, instead of
the default card with index number 0.

Repeat this procedure as required for each target computer.

4 Real-Time Application Environment

4-26

Command-Line Ethernet Card Selection by Index

If you are using multiple target computers that have multiple Ethernet cards, you must
specify which card to use for the Ethernet link. Use the following procedure to discover
the Ethernet index of the PCI cards on a specific target and specify which card to use.

Note: For this procedure, you must be able to burn CDs on your development computer
and use network boot mode for routine target operations.

Use the following procedure for target TargetPC1:

1 At the MATLAB prompt, get the environment object for this target computer and
make it the default target:

env = SimulinkRealTime.getTargetSettings('TargetPC1');

setAsDefaultTarget(env);

All other settings will be made to this object.
2 At the MATLAB prompt, type:

env.ShowHardware = 'on';

3 Set the Ethernet driver to the default:

env.TcpIpTargetDriver = 'Auto';

If TcpIpTargetDriver is set to a specific driver, such as 'I82559', the kernel
displays only information about boards that use that driver.

4 Set the boot method to CD/DVD boot:

env.TargetBoot='CDBoot';

5 Set the target monitor to print text only:

env.TargetScope = 'Disabled' ;

6 Type SimulinkRealTime.createBootImage.

The Simulink Real-Time software displays the following message and creates the
CD/DVD boot image.

Current boot mode: CDBoot

 Command-Line Ethernet Card Selection by Index

4-27

CD boot image is successfully created

Insert an empty CD/DVD. Available drives:

 [1] d:\

 [0] Cancel Burn

7 Insert the new boot disk and restart the target computer from the computer boot
switch.

After the start is complete, the target monitor displays information about the
Ethernet cards in the target computer, for example:

index: 0, driver: RTLANCE, Bus: 16, Slot: 7, Func: 0

index: 1, driver: R8139, Bus: 16, Slot: 8, Func: 0

index: 2, driver: I82559, Bus: 16, Slot: 9, Func: 0

You might need to change the boot order from the target computer BIOS to allow
starting from your disk. After the kernel starts with ShowHardware 'on', the
development computer cannot communicate with the target computer.

8 Note the index of the Ethernet card you want to use for the Ethernet link, for
example, 2.

9 At the MATLAB prompt, type:

env.ShowHardware = 'off';

env.EthernetIndex = '#';

is the index of the Ethernet card, for example, 2.
10 Set the boot method back to network boot:

env.TargetBoot= 'NetworkBoot';

11 Set the target monitor to graphics mode:

env.TargetScope = 'Enabled' ;

12 Type SimulinkRealTime.createBootImage.
13 Start the target computer from the computer boot switch.

The kernel selects the specified Ethernet card as the target computer card, instead of
the default card with index number 0.

Repeat this procedure as required for each target computer.

4 Real-Time Application Environment

4-28

Command-Line Serial Link Setup

On the development computer, set the properties that your development computer
requires for a serial link with a single target computer. For an Ethernet link, see
“Command-Line Ethernet Link Setup” on page 4-10.

Note: RS-232 communication type will be removed in a future release. Use Ethernet
instead.

• “RS-232 Protocol Hardware” on page 4-29
• “Command-Line RS-232 Settings” on page 4-30

The next task is “Command-Line Target Computer Settings” on page 4-31.

 RS-232 Protocol Hardware

4-29

RS-232 Protocol Hardware

To install RS-232 protocol interface hardware:

1 Acquire a null modem cable:

2 Connect the development and target computers with the null modem cable, using
either the COM1 or COM2 port.

Note which port is in use on the development computer. You need to set the
development computer port in the environment property settings.

The next task is “Command-Line RS-232 Settings” on page 4-30.

4 Real-Time Application Environment

4-30

Command-Line RS-232 Settings

After you have installed the RS-232 protocol interface hardware, before you can build
and download a real-time application, specify the environment properties for the
development and target computers.

• Do not use host scopes and a scope viewer on the development computer to acquire
and display large blocks of data. The slowness of the RS-232 connection causes large
delays for large blocks of data.

• When you use serial link, boot mode type 'NetworkBoot' is not supported.

Use the following procedure for target TargetPC1:

1 At the MATLAB prompt, create an environment object for this target computer and
make it the default target:

env = SimulinkRealTime.addTarget('TargetPC1');

setAsDefaultTarget(env);

All other settings will be made to this object.
2 At the MATLAB prompt, set the communication type to 'RS232':

env.HostTargetComm = 'RS232';

3 For development computer port, select one of 'COM1' or 'COM2'. For example:

env.RS232HostPort = 'COM1';

The default is 'COM1'. Simulink Real-Time selects the target computer port
automatically.

4 Select a baud rate as high as possible. For example:

env.RS232Baudrate = '115200';

The default is 115200. A baud rate less than 38400 can cause communication
failures.

Repeat this procedure as required for each target computer.

The next task is “Command-Line Target Computer Settings” on page 4-31.

 Command-Line Target Computer Settings

4-31

Command-Line Target Computer Settings

To run a Simulink Real-Time model on a target computer, you must configure the target
settings to match the capabilities of the target computer.

Use the following procedure for target TargetPC1:

1 At the MATLAB prompt, get the environment object for this target computer and
make it the default target:

env = SimulinkRealTime.getTargetSettings('TargetPC1');

setAsDefaultTarget(env);

All other settings will be made to this object.
2 Assign the following target computer settings as required:

• Target scope display

• env.TargetScope='Enabled' (the default) — Use if you want to display
information, such as a target scope, in graphic format.

• env.TargetScope='Disabled' — Use if you want to display information as
text.

To use the full features of a target scope, install a keyboard on the target
computer.

• USB support

• env.USBSupport='on' (the default) — Use if you want to use a USB port on
the target computer; for example, to connect a USB mouse.

• env.USBSupport='off' — Otherwise.
• Secondary IDE support

• env.SecondaryIDE='on' — Use only if you want to use the disks connected
to a secondary IDE controller.

• env.SecondaryIDE='off' (the default) — Otherwise.
• Multicore support

env.MulticoreSupport='on' — Use if your target computer has multicore
processors that you want to take advantage of.

4 Real-Time Application Environment

4-32

env.MulticoreSupport='off' (the default) — Otherwise.
• Non-Pentium support

env.NonPentiumSupport='on' — Use if your target computer has a 386 or 486
compatible processor.

env.NonPentiumSupport='off' (the default) — Otherwise.

If your target computer has a Pentium or higher compatible processor, setting
this value to 'on' slows the performance of your target computer.

• Target RAM size

env.TargetRAMSizeMB='Auto' (the default) — Use if you want the real-time
application to read the target computer BIOS and determine the amount of
memory up to a maximum of 4 GB.

env.TargetRAMSizeMB='xxx' — Use if the real-time application cannot
read the BIOS. You must assign the amount of memory, in megabytes, up to a
maximum of 4 GB.

The Target RAM size parameter defines the total amount of installed RAM in the
target computer available for the kernel, real-time application, data logging, and
other functions that use the heap.

The Simulink Real-Time kernel can use only 4 GB of memory.
• Maximum model size

env.MaxModelSize='1MB' (the default) — Use if the real-time application
requires at most this much memory on the target computer.

env.MaxModelSize='4MB' — Otherwise.

Setting Maximum model size takes effect for
env.TargetBoot='StandAlone' only.

Memory not used by the real-time application is used by the kernel and by the
heap for data logging. Selecting too high a value leaves less memory for data
logging. Selecting too low a value does not reserve enough memory for the real-
time application and creates an error. You can approximate the size of the real-
time application by the size of the DLM file produced by the build process.

 Command-Line Target Computer Settings

4-33

Repeat this procedure as required for each target computer.

The next task is “Command-Line Target Boot Methods” on page 4-34.

4 Real-Time Application Environment

4-34

Command-Line Target Boot Methods

You can start your target computer with the Simulink Real-Time kernel using one of
several methods.

Speedgoat systems come with DOS Loader software preinstalled. You can set up the DOS
Loader boot method on your development computer or configure another boot method.
See your Speedgoat system documentation or follow the link from “Speedgoat Real-Time
Target Machines” for further information.

1 Before creating a boot kernel, perform “Command-Line Kernel Creation Prechecks”
on page 4-35.

2 Select one of the following methods:

• “Command-Line Network Boot Method” on page 4-36
• “Command-Line CD/DVD Boot Method” on page 4-38
• “Command-Line DOS Loader Boot Method” on page 4-39
• “Command-Line Removable Disk Boot Method” on page 4-41
• “Command-Line Standalone Boot Method” on page 4-43

3 For boot methods other than StandAlone, perform “Run Confidence Test on
Configuration”.

For boot method StandAlone, create a model-specific confidence test, restart the
target computer, and run that confidence test. The default confidence test is not
intended for standalone execution.

 Command-Line Kernel Creation Prechecks

4-35

Command-Line Kernel Creation Prechecks

Before creating the target boot kernel, configure your Simulink Real-Time system. At a
minimum, do the following:

1 Check the physical connections between the development computer and the target
computer. If you are using TCP/IP, these are Ethernet connections that may pass
through a LAN.

2 Check your target computer BIOS settings (see “BIOS Settings”).
3 Check that you have write permission for your current working folder.
4 At the MATLAB prompt, get the environment object for this target computer and

make it the default target:

env = SimulinkRealTime.getTargetSettings('TargetPC1');

setAsDefaultTarget(env);

The contents of environment object env are printed in the command window.
5 Check the link settings. As required, see:

• “Command-Line Ethernet Link Setup” on page 4-10
• “Command-Line Serial Link Setup” on page 4-28

6 Check that TargetBoot is set to the required value.

Repeat this procedure as required for each target computer.

4 Real-Time Application Environment

4-36

Command-Line Network Boot Method

After you have configured the target computer environment parameters, you can use a
dedicated Ethernet network to load and run the Simulink Real-Time kernel. You do not
need a boot CD or removable boot drive.

There are the following limitations:

• Do not use the network boot method on a corporate or nondedicated network. Doing so
might interfere with dynamic host configuration protocol (DHCP) servers and cause
problems with the network.

• Your Ethernet card must be compatible with the Preboot eXecution Environment
(PXE) specification.

• If the target computer and development computer use a serial link (RS-232), you
cannot start the target computer across the network.

• If Stand Alone mode is enabled, you cannot start the target computer across the
network.

Before you start, establish the required Ethernet connection between development and
target computers using the procedure in “Command-Line Ethernet Link Setup” on page
4-10.

Use the following procedure for target TargetPC1:

1 At the MATLAB prompt, get the environment object for this target computer and
make it the default target:

env = SimulinkRealTime.getTargetSettings('TargetPC1');

setAsDefaultTarget(env);

The contents of environment object env are printed in the command window. Some
properties may already have the required values.

2 Set network boot method:

env.TargetBoot='NetworkBoot'

3 Set a TCP/IP address. Verify that the subnet of this IP address is the same as the
development computer. Otherwise your network boot fails. For example, type:

env.TcpIpTargetAddress='10.10.10.11'

4 Set the target computer MAC address (in hexadecimal). For example, type:

 Command-Line Network Boot Method

4-37

env.TargetMACAddress='01:23:45:67:89:ab'

5 In the MATLAB Command Window, type:

SimulinkRealTime.createBootImage

The following message appears:

Current boot mode: NetworkBoot

Synchronizing network boot table....ok

Starting network boot server....ok

Creating batch file (slrtnetboot.bat)....ok

Network boot image created successfully

The software creates and starts a network boot server process on the development
computer. You start the target computer using this process.

A minimized icon () representing the network boot server process appears on the
bottom right of the development computer system tray.

Repeat this procedure as required for each target computer.

The next task is “Run Confidence Test on Configuration”.

4 Real-Time Application Environment

4-38

Command-Line CD/DVD Boot Method

After you have configured the target computer environment parameters, you can use
a target boot CD or DVD to load and run the Simulink Real-Time kernel. This topic
describes using the MATLAB command line to create a boot CD or DVD for a single
target computer system.

Use the following procedure for target TargetPC1:

1 At the MATLAB prompt, get the environment object for this target computer and
make it the default target:

env = SimulinkRealTime.getTargetSettings('TargetPC1');

setAsDefaultTarget(env);

All other settings will be made to this object.
2 Set the CD boot method:

env.TargetBoot='CDBoot'

3 In the MATLAB window, type SimulinkRealTime.createBootImage.

The Simulink Real-Time software displays the following message and creates the
CD/DVD boot image.

Current boot mode: CDBoot

CD boot image is successfully created

Insert an empty CD/DVD. Available drives:

 [1] d:\

 [0] Cancel Burn

4 Insert the empty CD or DVD in the development computer.
5 Type 1 and then press Enter.
6 When the write operation has finished, remove the CD or DVD from the drive.
7 Insert the bootable CD/DVD into your target computer drive and restart the target

computer.

Repeat this procedure as required for each target computer.

The next task is “Run Confidence Test on Configuration”.

 Command-Line DOS Loader Boot Method

4-39

Command-Line DOS Loader Boot Method

DOS Loader mode allows you to start the Simulink Real-Time kernel on a target
computer from a fixed or removable device with DOS boot capability, such as a hard disk
or flash memory. After starting the target computer, you can download your real-time
application from the development computer over a serial or Ethernet link between the
development and target computers.

Note: To run in DOS Loader mode, the target computer boot device must provide a
minimal DOS environment complying with certain restrictions. For details, see:

• “Create a DOS System Disk”
• “DOS Loader Mode Restrictions”

Use the following procedure for target TargetPC1:

1 At the MATLAB prompt, get the environment object for this target computer and
make it the default target:

env = SimulinkRealTime.getTargetSettings('TargetPC1');

setAsDefaultTarget(env);

All other settings will be made to this object.
2 Set the DOS Loader boot method:

env.TargetBoot = 'DOSLoader';

3 Set DOSLoaderLocation to the folder where you want to create the DOS Loader
boot files. This location can be a local folder on the development computer or a
removable storage device that you use to start the target computer. By default, the
folder is the current working folder.

env.DOSLoaderLocation = 'D:\';

4 In the MATLAB Command Window, type SimulinkRealTime.createBootImage.

The Simulink Real-Time software displays the following message:

Current boot mode: DOSLoader

Simulink Real-Time DOS Loader files are successfully created

4 Real-Time Application Environment

4-40

This operation creates the following boot files in the specified location:
autoexec.bat

xpcboot.com

*.rtb

5 If you create boot files on a local hard disk, copy these files to a floppy disk, CD/DVD,
or other removable storage media.

6 Transfer the boot files to your target computer or insert the removable media
containing the boot files into the target computer drive or USB port.

7 Verify that autoexec.bat file is on the DOS boot path (typically the root folder).
8 Select the required boot device in the BIOS of the target computer.
9 Start the target computer.

When the target computer starts, it loads DOS, which executes the autoexec.bat
file. This file starts the Simulink Real-Time kernel (*.rtb). The target computer then
awaits commands from the development computer.

Repeat this procedure as required for each target computer.

The next task is “Run Confidence Test on Configuration”.

 Command-Line Removable Disk Boot Method

4-41

Command-Line Removable Disk Boot Method

After you have configured the target computer environment parameters, you can use a
target boot floppy disk, removable drive, or USB flash drive to load and run the Simulink
Real-Time kernel. This topic describes using the MATLAB command line to create a
removable boot disk.

If you are creating a removable boot drive from a USB flash drive, you must create a
bootable partition on the drive before performing this procedure. See “Create a Bootable
Partition”.

Use the following procedure for target TargetPC1:

1 At the MATLAB prompt, get the environment object for this target computer and
make it the default target:

env = SimulinkRealTime.getTargetSettings('TargetPC1');

setAsDefaultTarget(env);

All other settings will be made to this object.
2 In the output of the setAsDefaultTarget command, verify that property

TargetBoot is BootFloppy.

If required, update property TargetBoot, for instance by using the command
env.TargetBoot='BootFloppy'.

3 If you are creating a removable boot disk from a USB drive, insert the USB drive in
the development computer USB port and wait for it to be recognized.

4 In the MATLAB command window, type SimulinkRealTime.createBootImage.

The Simulink Real-Time software creates the CD/DVD boot image and displays the
following message:

Current boot mode: BootFloppy

Insert a formatted floppy disk into your host PC's

disk drive and press a key to continue

5 If required, insert an empty removable disk in the development computer drive and
then press a key.

6 When the write operation has finished, remove the removable disk from the drive or
USB port.

4 Real-Time Application Environment

4-42

7 Insert the removable boot disk into your target computer drive or USB port and
restart the target computer.

Repeat this procedure as required for each target computer.

The next task is “Run Confidence Test on Configuration”.

 Command-Line Standalone Boot Method

4-43

Command-Line Standalone Boot Method

Using the MATLAB command line, you can configure the Simulink Real-Time software
to run as a standalone real-time application. For information on Boot mode Stand
Alone, see “Standalone Mode”.

The target computer and its DOS environment must meet specific requirements to run in
Stand Alone mode:

• “Standalone Target Computer Prechecks”
• “Standalone Mode Restrictions”

To set up your target computer for Stand Alone mode:

1 “Command-Line Standalone Settings” on page 4-44
2 “Standalone Real-Time Application Build”
3 “Standalone Real-Time Application Transfer”
4 “Standalone Real-Time Application Boot Configuration”

Continue by restarting the target computer and testing your real-time application in
Stand Alone mode.

4 Real-Time Application Environment

4-44

Command-Line Standalone Settings

Use the command line to set the kernel environment properties. When you are done, you
can create a standalone kernel combined with your real-time application.

For Boot mode Stand Alone, you do not create a Simulink Real-Time boot disk or
network boot image. Instead, you copy files created from the build process to the target
computer hard drive.

Use the following procedure for target TargetPC1:

1 At the MATLAB prompt, get the environment object for this target computer and
make it the default target:

env = SimulinkRealTime.getTargetSettings('TargetPC1');

setAsDefaultTarget(env);

All other settings will be made to this object.
2 Set network boot method:

env.TargetBoot='StandAlone';

Repeat this procedure as required for each target computer.

The next task is “Standalone Real-Time Application Build”.

5

Signals and Parameters

Changing parameters in your real-time application while it is running, viewing the
resulting signal data, and checking the results, are important prototyping tasks. The
Simulink Real-Time software includes command-line and graphical user interfaces to
complete these tasks.

• “Signal Monitoring Basics” on page 5-3
• “Monitor Signals Using Simulink Real-Time Explorer” on page 5-4
• “Monitor Signals Using MATLAB Language” on page 5-7
• “Configure Stateflow States as Test Points” on page 5-8
• “Monitor Stateflow States Using Simulink Real-Time Explorer” on page 5-10
• “Signal Group Monitoring Formats” on page 5-13
• “Monitor Stateflow States Using MATLAB Language” on page 5-14
• “Animate Stateflow Charts Using Simulink External Mode” on page 5-15
• “Signal Tracing Basics” on page 5-17
• “Configure Real-Time Target Scope Blocks” on page 5-18
• “Simulink Real-Time Scope Usage” on page 5-23
• “Target Scope Usage” on page 5-24
• “Configure Real-Time Host Scope Blocks” on page 5-25
• “Host Scope Usage” on page 5-28
• “Create Target Scopes Using Simulink Real-Time Explorer” on page 5-29
• “Configure Scope Sampling Using Simulink Real-Time Explorer” on page 5-34
• “Trigger Scopes Interactively Using Simulink Real-Time Explorer” on page 5-37
• “Trigger Scopes Noninteractively Using Simulink Real-Time Explorer” on page

5-40
• “Configure Target Scopes Using Simulink Real-Time Explorer” on page 5-46
• “Create Signal Groups Using Simulink Real-Time Explorer” on page 5-50
• “Create Host Scopes Using Simulink Real-Time Explorer” on page 5-53

5 Signals and Parameters

5-2

• “Configure the Host Scope Viewer” on page 5-57
• “Configure Target Scopes Using MATLAB Language” on page 5-59
• “Trace Signals Using Simulink External Mode” on page 5-62
• “External Mode Usage” on page 5-65
• “Trace Signals Using a Web Browser” on page 5-66
• “Signal Logging Basics” on page 5-67
• “Configure Real-Time File Scope Blocks” on page 5-68
• “File Scope Usage” on page 5-73
• “Create File Scopes Using Simulink Real-Time Explorer” on page 5-75
• “Configure File Scopes Using Simulink Real-Time Explorer” on page 5-79
• “Log Signal Data into Multiple Files” on page 5-82
• “Log Signal Data Using Outport Block and Simulink Real-Time Explorer” on page

5-86
• “Log Signal Data Using Outport Block and MATLAB Language” on page 5-89
• “Configure File Scopes Using MATLAB Language” on page 5-94
• “Log Signals Using a Web Browser” on page 5-99
• “Tune Parameters Using Simulink Real-Time Explorer” on page 5-101
• “Create Parameter Groups Using Simulink Real-Time Explorer” on page 5-105
• “Tune Parameters Using MATLAB Language” on page 5-107
• “Tune Parameters Using Simulink External Mode” on page 5-110
• “Tune Parameters Using a Web Browser” on page 5-112
• “Save and Reload Parameters Using MATLAB Language” on page 5-113
• “Parameter Tuning Basics” on page 5-116
• “Configure Model to Tune Inlined Parameters” on page 5-118
• “Tune Inlined Parameters Using Simulink Real-Time Explorer” on page 5-121
• “Tune Inlined Parameters Using MATLAB Language” on page 5-124
• “Nonobservable Signals and Parameters” on page 5-125
• “Internationalization Issues” on page 5-126

 Signal Monitoring Basics

5-3

Signal Monitoring Basics

Signal monitoring acquires real-time signal data without time information during real-
time application execution. There is minimal additional load on the real-time tasks. Use
signal monitoring to acquire signal data without creating scopes that run on the target
computer.

In addition to signal monitoring, Simulink Real-Time enables you to monitor Stateflow
states as test points through the Simulink Real-Time Explorer and MATLAB command-
line interfaces. You designate data or a state in a Stateflow diagram as a test point,
making it observable during execution. You can work with Stateflow states as you do
with Simulink Real-Time signals, such as monitoring or plotting Stateflow states.

When you monitor signals from referenced models, first set the test point for the signal in
the referenced model. The software ignores signal labels in referenced models.

Note:

• Simulink Real-Time Explorer works with multidimensional signals in column-major
format.

• Some signals are not observable. See “Nonobservable Signals and Parameters” on
page 5-125.

You can monitor signals using Simulink Real-Time Explorer and MATLAB language.
You can monitor Stateflow states using Simulink Real-Time Explorer, MATLAB
language, and Simulink external mode.

5 Signals and Parameters

5-4

Monitor Signals Using Simulink Real-Time Explorer

This procedure uses the model xpcosc as an example. You must have already completed
the following setup:

1 Built and downloaded the real-time application to the target computer using
Simulink (on the toolbar).

2 Run Simulink Real-Time Explorer (command slrtexplr).
3 Connected to the target computer in the Targets pane (on the toolbar).
4 Set property Stop time to inf in the Applications pane (on the toolbar).

To monitor a signal:

1 In Simulink Real-Time Explorer, expand the Model Hierarchy node under the real-
time application node.

2 To view the signals in the real-time application, select the model node. On the
toolbar, click the View Signals icon . The Signals workspace opens.

3 To view the value of a signal, in the Signals workspace, select the Monitor check
box for the signal. For instance, select the check boxes for Signal Generator and
Integrator1. The signal values are shown in the Monitoring Value column.

4 To start execution, click the real-time application. On the toolbar, click the Start
icon .

5 To stop execution, click the real-time application. On the toolbar, click the Stop
icon .

The Application Parameters and Signals workspaces look like this figure.

 Monitor Signals Using Simulink Real-Time Explorer

5-5

• To group signals, see “Create Signal Groups Using Simulink Real-Time Explorer” on
page 5-50.

• When you are monitoring a signal group, you can change the output format of the
group by selecting one of the options in the Format column. See “Signal Group
Monitoring Formats” on page 5-13.

• To make both workspaces visible at the same time, drag one workspace tab down

until the following icon appears in the middle of the dialog box: . Continue to drag
until the cursor reaches the required quadrant, and then release the mouse button.

5 Signals and Parameters

5-6

• To save your Simulink Real-Time Explorer window layout, click File > Save Layout.
In a later session, you can click File > Restore Layout to restore your layout.

• If a block name consists only of spaces, Simulink Real-Time Explorer does not display
a node for or signals from that block. To reference such a block:

• Provide an alphanumeric name for the block
• Rebuild and download the model to the target computer.
• Reconnect the MATLAB session to the target computer.

 Monitor Signals Using MATLAB Language

5-7

Monitor Signals Using MATLAB Language

This procedure uses the model xpc_osc3 as an example. You must have already
completed the setup in “Prepare Real-Time Application Using MATLAB Language”.

1 To get a list of signals, type:

tg.ShowSignals = 'on'

ShowSignals = on

 Signals = INDEX VALUE BLOCK NAME LABEL

 0 0.000000 Signal Generator

 1 0.000000 Transfer Fcn

If your signal has a unique label, its label is displayed in the Label column. If
the label is not unique, the command returns an error. If the signal label is in a
referenced model, the software ignores it.

2 To get the value of a signal, use the getsignal method. In the MATLAB Command
Window, type:

getsignal(tg, 0)

0 is the signal index. the MATLAB interface displays the value of signal 1.

ans=

 3.731

See also “Configure Target Scopes Using MATLAB Language” on page 5-59.

Note: The Simulink Real-Time software lists referenced model signals with their full
block path. For example, xpc_osc5/childmodel/gain.

5 Signals and Parameters

5-8

Configure Stateflow States as Test Points
This procedure uses the model old_sf_car as an example. It describes one way to set
Stateflow states as test points for monitoring.

1 In the MATLAB window, type old_sf_car.
2 In the Simulink window, click Simulation > Model Configuration Parameters.
3 In the Configuration Parameters dialog box, click the Code Generation node.
4 To build a basic real-time application, in the Target selection section of the Code

Generation pane, click Browse at the System target file list. Click slrt.tlc,
and then click OK.

5 In the old_sf_car model, double-click the shift_logic chart.

 Configure Stateflow States as Test Points

5-9

6 In the shift_logic chart, click Tools > Model Explorer.
7 In the Model Explorer, expand old_sf_car, and then shift_logic.
8 Expand gear_state, and then select first.
9 In the State first pane Logging tab, select the Test point check box. This selection

creates a test point for the first state.
10 Click Apply.
11 Repeat steps 8–10 for gear_state values second, third, and fourth.
12 Build and download the old_sf_car real-time application to the target computer.
13 View Stateflow states using one of:

• “Monitor Stateflow States Using Simulink Real-Time Explorer” on page 5-10
• “Monitor Stateflow States Using MATLAB Language” on page 5-14
• “Animate Stateflow Charts Using Simulink External Mode” on page 5-15

You can now view the states with Simulink Real-Time Explorer or the MATLAB
interface.

5 Signals and Parameters

5-10

Monitor Stateflow States Using Simulink Real-Time Explorer

You must have already and built and downloaded the real-time application to carry out
this procedure.

This procedure uses the model old_sf_car as an example. You must have already
completed the following setup:

1 Set Stateflow states as test points.
2 Built and downloaded the real-time application to the target computer using

Simulink (on the toolbar).
3 Run Simulink Real-Time Explorer (command slrtexplr).
4 Connected to the target computer in the Targets pane (on the toolbar).

To monitor a test point:

1 In the Applications pane, expand the real-time application and the Model
Hierarchy node.

2 To view the test point, select shift_logic and click the View Signals icon on the
toolbar.

The Signals workspace opens. The test point gear_state.first appears like other
signals in the Signals workspace.

3 In the Signals workspace, select the Monitor check box for gear_state.first,
gear_state.second, gear_state.third, and gear_state.fourth. The values
of the signals are shown in the Monitoring Value column.

4 To start execution, click the real-time application. On the toolbar, click the Start
icon .

5 To stop execution, click the real-time application. On the toolbar, click the Stop
icon .

The Application Parameters and Signals workspaces look like this figure.

 Monitor Stateflow States Using Simulink Real-Time Explorer

5-11

• To group signals, see “Create Signal Groups Using Simulink Real-Time Explorer” on
page 5-50.

• When you are monitoring a signal group, you can change the output format of the
group by selecting one of the options in the Format column. See “Signal Group
Monitoring Formats” on page 5-13.

• To make both workspaces visible at the same time, drag one workspace tab down

until the following icon appears in the middle of the dialog box: . Continue to drag
until the cursor reaches the required quadrant, and then release the mouse button.

5 Signals and Parameters

5-12

• To save your Simulink Real-Time Explorer window layout, click File > Save Layout.
In a later session, you can click File > Restore Layout to restore your layout.

 Signal Group Monitoring Formats

5-13

Signal Group Monitoring Formats

When monitoring a signal group using Simulink Real-Time Explorer, you can change
the output format of the group by selecting one of the Format options. The monitoring
formats are an extension of the options used in C sprint format strings.

Data Type Digits Meaning Example

F 1–7 Decimal float, with from one
to seven digits to the right
of the decimal point

Decimal 31.5415 with
format F7 is 31.5415000.

E 1–7 Scientific notation, with
from one to seven digits
to the right of the decimal
point

Decimal 31.5415 with
format E7 is 3.1541500E1.

G 1–7 The shorter of F and E, with
from one to seven digits
to the right of the decimal
point

Decimal 31.5415 with
format G7 is 31.5415000.

H 1–7 Hexadecimal integer, one
to seven hexadecimal digits
wide

Decimal 315 with format H7
is 0x000013B.

B 1–7 Binary integer, one to seven
binary digits wide

Decimal 31 with format B7 is
0011111.

5 Signals and Parameters

5-14

Monitor Stateflow States Using MATLAB Language

You must have already set Stateflow states as test points. If you have not, see “Configure
Stateflow States as Test Points” on page 5-8.

1 To get a list of signals in the MATLAB Command Window, type:

tg = slrt

2 To display the signals in the real-time application, type:

tg.ShowSignals = 'on'

The latter causes the MATLAB window to display a list of the target object
properties for the available signals.

For Stateflow states that you have set as test points, the state appears in the BLOCK
NAME column. For example, if you set a test point for the first state of gear_state
in the shift_logic chart of the old_sf_car model, the state of interest is first.
In the list of signals in the MATLAB interface, this state appears as follows:

shift_logic:gear_state.first

shift_logic is the path to the Stateflow chart. gear_state.first is the path to
the specific state.

 Animate Stateflow Charts Using Simulink External Mode

5-15

Animate Stateflow Charts Using Simulink External Mode

The Simulink Real-Time software supports the animation of Stateflow charts in your
model to provide visual verification that your chart behaves as expected.

You must be familiar with the use of Stateflow animation. For more information on
Stateflow animation, see “Animate Stateflow Charts” in the Stateflow documentation.

1 In the Simulink Editor window, select Simulation > Mode > External.
2 Select Code > External Mode Control Panel.
3 Select Signal & Triggering.
4 In the Trigger section of the External Signal & Triggering window:

• Set Mode to normal.
• In the Duration box, enter 5.
• Select the Arm when connecting to target check box.

5 Click Apply.
6 Select Simulation > Model Configuration Parameters.
7 Navigate to the Simulink Real-Time Options node.
8 Select the Enable Stateflow animation check box.
9 Click Apply.
10 Build and download the model to the target computer.
11 On the toolbar, click the Connect To Target icon .

The current Simulink model parameters are downloaded from the development
computer to the real-time application.

12 To start the simulation, click the Run icon on the toolbar.

The simulation begins to run. You can observe the animation by opening the
Stateflow Editor for your model.

13 To stop the simulation, click the Stop icon on the toolbar.

5 Signals and Parameters

5-16

Note: Enabling the animation of Stateflow charts also displays additional Stateflow
information. The Stateflow software requires this information to animate charts. You can
disregard this information.

 Signal Tracing Basics

5-17

Signal Tracing Basics

Signal tracing acquires signal and time data from a real-time application. While the real-
time application is running, you can visualize the data on the target computer using a
target scope. You can also upload the data to the development computer and display it
using a host scope.

You trace signals using target and host scopes and view them using Simulink Real-Time
Explorer, Simulink external mode, MATLAB language, and a web browser interface.

Simulink Real-Time Explorer can display multidimensional signals in column-major
format.

Some signals are not observable. See “Nonobservable Signals and Parameters” on page
5-125.

5 Signals and Parameters

5-18

Configure Real-Time Target Scope Blocks
Simulink Real-Time includes a specialized Scope block that you can configure to display
signal and time data on the target computer monitor. Add a Scope block to the model,
select Scope type Target, and configure the other parameters as described in the
following procedure.

• Do not confuse Simulink Real-Time Scope blocks with standard Simulink Scope
blocks.

• For more on using Simulink Real-Time Scope blocks, see “Simulink Real-Time Scope
Usage” on page 5-23.

• For more on using target scopes, see “Target Scope Usage” on page 5-24.
• This procedure uses the model xpc_osc2 as an example.

The example model is stored in the documentation examples folder. To access the
model, type:

addpath(fullfile(matlabroot,'help','toolbox','xpc',...

 'examples'));

1 In the MATLAB window, type xpc_osc2.

The Simulink block diagram opens for the model xpc_osc2.
2 Double-click the block labeled Scope.

The Block Parameters: Scope dialog box opens. By default, the target scope dialog
box is displayed.

3 In the Scope number box, a unique number is displayed that identifies the scope.
This number is incremented each time you add a Simulink Real-Time Scope block.

This number identifies the Simulink Real-Time Scope block and the scope screen on
the development or target computers.

4 From the Scope type list, select Target if it is not already selected. The updated
dialog box is displayed.

5 To start the scope automatically when the real-time application executes, select
the Start scope when application starts check box. The target scope opens
automatically on the target computer monitor.

In Stand Alone mode, this setting is mandatory, because the development
computer is not available to issue a command to start scopes.

 Configure Real-Time Target Scope Blocks

5-19

6 From the Scope mode list, select Numerical, Graphical redraw, Graphical
sliding, or Graphical rolling.

If you have a scope type of Target and a scope mode of Numerical, the scope block
dialog box adds a Numerical format box. You can define the display format for the
data. If you choose not to complete the Numerical format box, the Simulink Real-
Time software displays the signal using the default format of %15.6f. This format is
a floating-point format without a label.

7 If you select scope mode Numerical, in the Numerical format box, type a label
and associated numeric format type in which to display signals. By default, the entry
format is floating-point without a label, %15.6f. The Numerical format box takes
entries of the format:

'[LabelN] [%width.precision][type] [LabelX]'

• LabelN is the label for the signal. You can use a different label for each signal or
the same label for each signal. This argument is optional.

• width is the minimum number of characters to offset from the left of the screen
or label. This argument is optional.

• precision is the maximum number of decimal places for the signal value. This
argument is optional.

• type is the data type for the signal format. You can use one or more of the
following types.

Type Description

%e or %E Exponential format using e or E
%f Floating point
%g Signed value printed in f or e format, depending on which is

smaller
%G Signed value printed in f or E format, depending on which is

smaller

• LabelX is a second label for the signal. You can use a different label for each
signal or the same label for each signal. This argument is optional.

Enclose the contents of the Numerical format text box in single quotation marks.

For example:

5 Signals and Parameters

5-20

'Foo %15.2f end'

For a whole integer signal value, enter 0 for the precision value. For example:

'Foo1 %15.0f end'

For a line with multiple entries, delimit each entry with a command and enclose the
entire string in single quotation marks. For example:

'Foo2 %15.6f end,Foo3 %15.6f end2'

You can have multiple Numerical format entries, separated by a comma. If you
enter one entry, that entry applies to each signal (scalar expansion). If you enter N
label entries for N+Ksignals, the first N-1 entries apply to the first N-1 signals. The
Nth entry is scalar expanded for the remaining K+1 signals. If you have two entries
and one signal, the software ignores the second label entry and applies the first
entry. You can enter as many format entries as you have signals for the scope. The
format string has a maximum length of 100 characters, including spaces, for each
signal.

8 To display grid lines on the scope, select the Grid check box. This parameter is
applicable only for target scopes with scope modes of type Graphical redraw,
Graphical sliding, or Graphical rolling.

9 In the Y-Axis limits box, enter a row vector with two elements. The first element is
the lower limit of the y-axis and the second element is the upper limit. If you enter 0
for both elements, scaling is set to auto. This parameter is applicable only for target
scopes with scope modes of type Graphical redraw, Graphical sliding, or
Graphical rolling.

10 In the Number of samples box, enter the number of values to be acquired in a data
package.

• If you select a Scope mode of Graphical redraw, the display redraws the
graph every Number of samples.

• If you select a Scope mode of Numerical, the block updates the output every
Number of samples.

• If you select a Trigger mode other than FreeRun, this parameter can specify the
Number of samples to be acquired before the next trigger event.

11 In the Number of pre/post samples box, enter the number of samples to save
or skip. To save N samples before a trigger event, specify the value -N. To skip N
samples after a trigger event, specify the value N. The default is 0.

 Configure Real-Time Target Scope Blocks

5-21

12 In the Decimation box, enter a value to indicate when data is collected. The value 1
means that data is collected at each sample time. A value of 2 or greater means that
data is collected at less than every sample time.

13 From the Trigger mode list, select FreeRun.

• If you select FreeRun or Software Triggering, you do not need to enter
additional parameters.

• If you select Signal Triggering, then enter the following additional
parameters, as required:

• In the Trigger signal box, enter the index of a signal previously added to the
scope.

This parameter does not apply if the Add signal port to connect a signal
trigger source check box is selected.

• (Alternatively) Click the Add signal port to connect a signal trigger
source check box, then connect an arbitrary trigger signal to the port
Trigger signal.

• In the Trigger level box, enter a value for the signal to cross before
triggering.

• From the Trigger slope list, select one of Either, Rising, or Falling.
• If you select Scope Triggering, then enter the following additional

parameters, as required:

• In the Trigger scope number box, enter the scope number of a Scope block.
If you use this trigger mode, add a second Scope block to your Simulink model.

• To trigger one scope on a specific sample of another scope, enter a value
in Sample to trigger on (-1 for end of acquisition). The default value
of 0 indicates that the triggering scope and the triggered scope start
simultaneously.

For more information on this field, see “Trigger One Scope with Another
Scope” on page 11-23.

The target scope dialog box looks like this figure.

5 Signals and Parameters

5-22

14 Click OK.
15 From the File menu, click Save As. The model is saved as xpc_osc2.

 Simulink Real-Time Scope Usage

5-23

Simulink Real-Time Scope Usage

This topic describes usage issues common to all Simulink Real-Time Scope types.

• To monitor an output signal from a Constant block by connecting it to a Simulink
Real-Time Scope block, add a test point for the Constant block output signal.

• You can add a Simulink Real-Time Scope block only to the topmost model, not to a
referenced model. To log signals from referenced models, use Simulink Real-Time
Explorer scopes or Simulink Real-Time language scope objects.

• When you build and download the real-time application, the Simulink Real-Time
kernel creates a scope representing the real-time Scope block. You can change the
Scope parameters after building the real-time application or while it is running.
To change the parameters, assign the scope to a MATLAB variable using the
target object method SimulinkRealTime.target.getscope. You can use
SimulinkRealTime.target.getscope to remove a scope created during the build
and download process. The Simulink Real-Time kernel recreates the scope when you
restart the real-time application.

• If the output of a Mux block is connected to the input of a Simulink Real-Time Scope
block, the signal is not observable. To observe the signal, add a unity gain block (a
Gain block with a gain of 1.0) between the Mux block and the Simulink Real-Time
Scope block.

• You can pass vector signals into a Simulink Real-Time Scope block. The real-time
application interprets the vector as a series of individual signals. However, you cannot
pass a matrix signal into a Scope block. Doing so results in a build error. To display a
matrix signal, pass it to a Reshape block and pass the resulting vector into the Scope
block.

See Also
Gain | Mux | Reshape | SimulinkRealTime.target.getscope

More About
• “Nonobservable Signals and Parameters” on page 5-125
• “Target Scope Usage” on page 5-24
• “Host Scope Usage” on page 5-28
• “File Scope Usage” on page 5-73

5 Signals and Parameters

5-24

Target Scope Usage

This topic describes usage issues unique to target scopes. For issues common to all scope
types, see “Simulink Real-Time Scope Usage” on page 5-23.

• There can be no more than nine target scopes in a model, whether created using a
real-time Scope block or using the run-time interface. Each target scope can contain
up to 10 signals.

• The combined number of target scopes and Video Display blocks in the model cannot
exceed nine.

• For a target scope, logged data (sc.Data and sc.Time) is not accessible over the
command-line interface on the development computer. Logged data is only accessible
when the scope object status (sc.Status) is set to Finished. When the scope
completes one data cycle (time to collect the number of samples), the scope engine
automatically restarts the scope instead of setting sc.Status to Finished.

If you create a scope object, for example, sc = getscope(tg,1) for a target scope,
you cannot get the logged data by typing sc.Data. Instead, you get an error message:

Scope # 1 is of type 'Target'! Property Data

 is not accessible.

To view data on the development computer while the data is being displayed on the
target computer, define a second scope object with type host. Then synchronize the
acquisitions of the two scope objects by setting TriggerMode for the second scope to
'Scope'.

See Also
SimulinkRealTime.target.getscope | Video Display

 Configure Real-Time Host Scope Blocks

5-25

Configure Real-Time Host Scope Blocks

Simulink Real-Time includes a specialized real-time Scope block that you can configure
to display signal and time data on the development computer monitor. Add a Scope block
to the model, select Scope type Host, and configure the other parameters as described
in the following procedure.

• Do not confuse Simulink Real-Time Scope blocks with standard Simulink Scope
blocks.

• For more on using Simulink Real-Time Scope blocks, see “Simulink Real-Time Scope
Usage” on page 5-23.

• For more on host scopes, see “Host Scope Usage” on page 5-28.
• This procedure uses the model xpc_osc2 as an example.

The example model is stored in the documentation examples folder. To access the
model, type:

addpath(fullfile(matlabroot,'help','toolbox','xpc',...

 'examples'));

1 In the MATLAB window, type xpc_osc2.

The Simulink block diagram opens for the model xpc_osc2.
2 Double-click the block labeled Scope.

The Block Parameters: Scope dialog box opens. By default, the target scope dialog
box is displayed.

3 In the Scope number box, a unique number is displayed that identifies the scope.
This number is incremented each time that you add a Simulink Real-Time scope.

This number identifies the Simulink Real-Time Scope block and the scope screen on
the development or target computers.

4 From the Scope type list, select Host. The updated dialog box is displayed.
5 To start the scope automatically when the real-time application executes, select the

Start scope when application starts check box. You can then open a host scope
viewer window from Simulink Real-Time Explorer.

In Stand Alone mode, this setting is mandatory because the development computer
is not available to issue a command to start scopes.

5 Signals and Parameters

5-26

6 In the Number of samples box, enter the number of values to be acquired in a data
package.

7 In the Number of pre/post samples box, enter the number of samples to save
or skip. To save N samples before a trigger event, specify the value -N. To skip N
samples after a trigger event, specify the value N. The default is 0.

8 In the Decimation box, enter a value to indicate when data is collected. The value 1
means that data is collected at each sample time. A value of 2 or greater means that
data is collected at less than every sample time.

9 From the Trigger mode list, select FreeRun.

• If you select FreeRun or Software Triggering, you do not need to enter
additional parameters.

• If you select Signal Triggering, then enter the following additional
parameters, as required:

• In the Trigger signal box, enter the index of a signal previously added to the
scope.

This parameter does not apply if the Add signal port to connect a signal
trigger source check box is selected.

• (Alternatively) Click the Add signal port to connect a signal trigger
source check box, then connect an arbitrary trigger signal to the port
Trigger signal.

• In the Trigger level box, enter a value for the signal to cross before
triggering.

• From the Trigger slope list, select one of Either, Rising, or Falling.
• If you select Scope Triggering, then enter the following additional

parameters, as required:

• In the Trigger scope number box, enter the scope number of a Scope block.
If you use this trigger mode, add a second Scope block to your Simulink model.

• To trigger one scope on a specific sample of another scope, enter a value
in Sample to trigger on (-1 for end of acquisition). The default value
of 0 indicates that the triggering scope and the triggered scope start
simultaneously.

For more information on this field, see “Trigger One Scope with Another
Scope” on page 11-23.

 Configure Real-Time Host Scope Blocks

5-27

The host scope dialog box looks like this figure.

10 Click OK.
11 From the File menu, click Save As. The model is saved as xpc_osc2.

5 Signals and Parameters

5-28

Host Scope Usage

This topic describes usage issues unique to host scopes. For issues common to all scope
types, see “Simulink Real-Time Scope Usage” on page 5-23.

• Simulink Real-Time supports as many host scopes as the target computer resources
can support. Each host scope can contain as many signals as the target computer
resources can support.

• Use host scopes to log signal data triggered by an event while your real-time
application is running. The host scope acquires the first N samples into a buffer. You
can retrieve this buffer into the scope object property sc.Data. The scope then stops
and waits for you to restart the scope manually.

The number of samples N to log after triggering an event is equal to the value that you
entered in the Number of samples parameter.

Select the type of trigger event in the Block Parameters: Scope dialog box by setting
Trigger Mode to Signal Triggering, Software Triggering, or Scope
Triggering.

 Create Target Scopes Using Simulink Real-Time Explorer

5-29

Create Target Scopes Using Simulink Real-Time Explorer

You can create a virtual target scope on the target computer using Simulink Real-Time
Explorer. These scopes have the full capabilities of the Scope block in Target mode, but
do not persist past the current execution.

Note: For information on using target scope blocks, see “Configure Real-Time Target
Scope Blocks” on page 5-18 and “Target Scope Usage” on page 5-24.

This procedure uses the model xpcosc as an example. You must have already completed
the following setup:

1 Built and downloaded the real-time application to the target computer using
Simulink (on the toolbar).

2 Run Simulink Real-Time Explorer (command slrtexplr).
3 Connected to the target computer in the Targets pane (on the toolbar).
4 Set property Stop time to inf in the Applications pane (on the toolbar).

To configure a virtual target scope:

1 In the Scopes pane, expand the xpcosc node.
2 To add a target scope, select Target Scopes and then click the Add Scope icon on

the toolbar.

The new scope appears under node Target Scopes, for example Scope 1.
3 Select Scope 1 and then click the Properties icon on the toolbar.
4 In the Scope Properties workspace, click Signals. You add signals from the

Applications Signals workspace.
5 In the Applications pane, expand the real-time application node and then node

Model Hierarchy.
6 Select the model node and then click the View Signals icon on the toolbar.

The Signals workspace opens, showing a table of signals with properties and actions.
7 In the Signals workspace, to add signal Signal Generator to Scope1, drag signal

Signal Generator to the Scope1 properties workspace.

5 Signals and Parameters

5-30

8 Add signal Integrator1 to Scope 1 in the same way.

The dialog box looks like this figure.

9 To start execution, click the real-time application and then click the Start icon on
the toolbar.

The application starts running. No output appears on the target computer monitor.
10 To start Scope 1, click Scope 1 in the Scopes pane and then click the Start Scope

icon on the toolbar.

 Create Target Scopes Using Simulink Real-Time Explorer

5-31

Output for signals Signal Generator and Integrator1 appears on the target
computer monitor.

11 To stop Scope 1, click Scope 1 in the Scopes pane and then click the Stop Scope
icon on the toolbar.

The signals shown on the target computer stop updating while the real-time
application continues running. The target computer monitor displays a message like
this message:

Scope: 1, set to state 'interrupted'

12 To stop execution, click the real-time application and then click the Stop icon on
the toolbar.

The real-time application on the target computer stops running, and the target
computer displays messages like these messages:

minimal TET: 0.0000006 at time 0.001250

maximal TET: 0.0000013 at time 75.405500

The target computer screen looks like this figure.

5 Signals and Parameters

5-32

• You can create a virtual target scope from the scope types list by clicking Add Scope
next to scope type Target Scopes.

• You can add or remove signals from a virtual target scope while the scope is either
stopped or running.

• To group signals, see “Create Signal Groups Using Simulink Real-Time Explorer” on
page 5-50.

 Create Target Scopes Using Simulink Real-Time Explorer

5-33

• To configure the target computer display, see “Configure Target Scopes Using
Simulink Real-Time Explorer” on page 5-46.

• To configure data sampling, see “Configure Scope Sampling Using Simulink Real-
Time Explorer” on page 5-34.

• To configure scope triggering, see “Trigger Scopes Interactively Using Simulink
Real-Time Explorer” on page 5-37 and “Trigger Scopes Noninteractively Using
Simulink Real-Time Explorer” on page 5-40.

• To make both workspaces visible at the same time, drag one workspace tab down

until the following icon appears in the middle of the dialog box: . Continue to drag
until the cursor reaches the required quadrant, and then release the mouse button.

• To save your Simulink Real-Time Explorer window layout, click File > Save Layout.
In a later session, you can click File > Restore Layout to restore your layout.

• If a block is unnamed, Simulink Real-Time Explorer does not display signals or a node
for that block. To reference such a block:

• Provide an alphanumeric name for the block
• Rebuild and download the model to the target computer.
• Reconnect the MATLAB session to the target computer.

5 Signals and Parameters

5-34

Configure Scope Sampling Using Simulink Real-Time Explorer

You can customize sampling for Simulink Real-Time scopes to facilitate data access to
the running model. You can configure sampling whether you added a Scope block to the
model or added the scope at run time.

This procedure uses the model xpcosc as an example. You must have already completed
the procedure in “Create Target Scopes Using Simulink Real-Time Explorer” on page
5-29. Target execution and scopes must be stopped.

1 Select Scope 1 and open the Properties pane (on the Scopes toolbar).
2 In the Scope 1 properties pane, click Sampling.
3 In the Number of Samples box, enter the number of values to be acquired in a data

package, here 250.

If you select a Display mode of Graphical redraw, the display redraws the graph
every Number of Samples.

If you select a Display mode of Numerical, the block updates the output every
Number of Samples.

If you select a Trigger Mode other than FreeRun, this parameter can specify the
number of samples to be acquired before the next trigger event. See “Trigger Scopes
Interactively Using Simulink Real-Time Explorer” on page 5-37 and “Trigger
Scopes Noninteractively Using Simulink Real-Time Explorer” on page 5-40.

4 In the Decimation box, enter 10 to indicate that data must be collected at every
10th sample time. The default is 1, to collect data at every sample time.

5 In the Number of pre/post samples box, enter the number of samples to save
or skip. To save N samples before a trigger event, specify the value -N. To skip N
samples after a trigger event, specify the value N. The default is 0.

The dialog box looks like this figure.

 Configure Scope Sampling Using Simulink Real-Time Explorer

5-35

6 Start execution (on the Applications toolbar).
7 Start Scope 1 (on the toolbar).

Output for signals Signal Generator and Integrator1 appears on the target
computer monitor.

5 Signals and Parameters

5-36

8 Stop Scope 1 (on the toolbar).
9 Stop execution (on the Applications toolbar).

 Trigger Scopes Interactively Using Simulink Real-Time Explorer

5-37

Trigger Scopes Interactively Using Simulink Real-Time Explorer

To facilitate your interaction with the running model, you can customize scope triggering
for Simulink Real-Time scopes. You can configure triggering whether you created the
scope by adding a Scope block to the model or by adding the scope at run time.

The following procedures use the model xpcosc as an example. You must have already
completed the procedure in “Create Target Scopes Using Simulink Real-Time Explorer”
on page 5-29. Target execution and scopes must be stopped.

Freerun Triggering

In Trigger Mode Freerun, the scope triggers automatically when it is started. It
displays data until it is stopped. By default, Trigger Mode is set to Freerun.

1 Start execution (on the Applications toolbar).
2 Select Scope 1 and open the Properties pane (on the Scopes toolbar).
3 In the Scope 1 pane, click Triggering.
4 Select Trigger Mode Freerun.
5 Start and stop Scope 1 (and on the toolbar).

Signal data is displayed on the target computer monitor when the scope starts and
stops when the scope stops.

6 Stop execution (on the Applications toolbar).

Software Triggering

In Trigger Mode Software, the scope triggers when you select Scope 1 and then click
the Trigger icon on the toolbar.

1 Start execution (on the Applications toolbar).
2 Select Trigger Mode Software.
3 Start Scope 1 (on the toolbar).

The Trigger icon is enabled on the toolbar.

5 Signals and Parameters

5-38

4 Click the Trigger icon on the Scopes toolbar.

The current signal data is displayed on the target computer monitor when you click
the icon.

5 Stop Scope 1 (on the toolbar).

The dialog box looks like this figure.

The target monitor looks like this figure.

 Trigger Scopes Interactively Using Simulink Real-Time Explorer

5-39

6 Stop execution (on the Applications toolbar).

5 Signals and Parameters

5-40

Trigger Scopes Noninteractively Using Simulink Real-Time Explorer

To facilitate your control of the running model, you can customize scope triggering for
Simulink Real-Time scopes. You can configure triggering whether you added a Scope
block to the model or added the scope at run time.

The following procedures use the model xpcosc as an example. You must have already
completed the procedure in “Create Target Scopes Using Simulink Real-Time Explorer”
on page 5-29. Target execution and scopes must be stopped.

Signal Triggering

In Trigger Mode Signal, the scope triggers when a signal rises or falls through a
specified level.

1 Start execution (on the Applications toolbar).
2 Select Scope 1 and open the Properties pane (on the Scopes toolbar).
3 In the Scope 1 pane, click Triggering.
4 Select Trigger Mode Signal.

Settings Trigger Signal, Trigger Slope, and Trigger Level appear.
5 Type the number displayed on the target computer screen for Signal Generator

(here, 5) in the Trigger Signal text box.
6 Set Trigger Slope to Rising.
7 Leave Trigger Level as 0, indicating that the signal crosses 0 before Scope 1

triggers.

 Trigger Scopes Noninteractively Using Simulink Real-Time Explorer

5-41

8 Start Scope 1 (on the toolbar).

Signal data is displayed on the target computer monitor, with the rising pulse of
Signal Generator just beyond the left side.

5 Signals and Parameters

5-42

9 Stop Scope 1 (on the toolbar).
10 Stop execution (on the Applications toolbar).

Scope Triggering

In Trigger Mode Scope, the scope triggers when another scope triggers. In this
example, Scope 2 triggers when signal-triggered Scope 1 triggers.

 Trigger Scopes Noninteractively Using Simulink Real-Time Explorer

5-43

1 Start execution (on the Applications toolbar).
2 Add scope Scope 2 (on the Scopes toolbar).
3 Open the Signals pane (on the Applications toolbar).
4 Add signal Integrator to Scope 2 in the Signals pane.
5 In the Scope 2 pane, click Triggering.
6 Select Trigger Mode Scope.

Settings Trigger scope and Trigger scope sample appear.
7 Set Trigger scope to 1. Press Enter. Scope 2 then triggers when Scope 1 triggers.
8 Leave Trigger scope sample set to 0. Scope 2 triggers on the same sample as

Scope 1.

5 Signals and Parameters

5-44

9 Explicitly start both Scope 1 and Scope 2 (on the toolbar).

Scope 1 and Scope 2 display signal data on the target computer monitor.

 Trigger Scopes Noninteractively Using Simulink Real-Time Explorer

5-45

10 Explicitly stop both Scope 1 and Scope 2 (on the toolbar).
11 Stop execution (on the Applications toolbar).

5 Signals and Parameters

5-46

Configure Target Scopes Using Simulink Real-Time Explorer

To facilitate your view of the signal data, you can configure the target scope display. You
can configure the display whether you added a Scope block to the model or added the
scope at run time.

This procedure uses the model xpcosc as an example. You must have already completed
the procedure in “Create Target Scopes Using Simulink Real-Time Explorer” on page
5-29. Target execution and scopes must be stopped.

1 Start execution (on the Applications toolbar).
2 Select Scope 1 and open the Properties pane (on the Scopes toolbar).
3 In the Scope 1 pane, click Display.
4 Select Display mode Redraw and then click in the Y-Limits box.

This value is the default. It causes the scope display to redraw when it has acquired
as many samples as specified in Number of Samples.

5 Start Scope 1 (on the toolbar).

Signal data is displayed on the target computer monitor, appearing to move to the
left.

6 Enter [0,10] in the Y-Limits box and then press Enter. The default setting is
[0,0], which automatically scales the output according to the signal values.

The display changes to show only values at and above the zero line.
7 Clear the Grid (On/Off) check box. By default, the box is selected.

 Configure Target Scopes Using Simulink Real-Time Explorer

5-47

The target computer monitor looks like this figure.

5 Signals and Parameters

5-48

8 Select Display mode Numerical and then click in the Y-Limits box.

The grid and axes disappear. The target computer monitor displays the signals, color
coded, in the default format of %15.6f (a floating-point format without a label).

9 Select Display mode Rolling and then click in the Y-Limits box.

The display changes to a display that continuously moves a window along the signal
stream. New data enters the display from the right and then moves toward the left.

 Configure Target Scopes Using Simulink Real-Time Explorer

5-49

10 Select Display mode Sliding and then click in the Y-Limits box. In this mode, the
scope refreshes continuously. New data overwrites the display from the left toward
the right.

11 Stop Scope 1 (on the toolbar).
12 Stop execution (on the Applications toolbar).

5 Signals and Parameters

5-50

Create Signal Groups Using Simulink Real-Time Explorer

When testing a complex model with many signals, you frequently must select signals
for tracing or monitoring from multiple parts and levels of the model hierarchy. You can
make this task easier by using Simulink Real-Time Explorer to create a signal group and
save it to disk.

This procedure uses the model xpcosc as an example. You must have already completed
the following setup:

1 Built and downloaded the real-time application to the target computer using
Simulink (on the toolbar).

2 Run Simulink Real-Time Explorer (command slrtexplr).
3 Connected to the target computer in the Targets pane (on the toolbar).

To create a signal group:

1 In the Applications pane, expand the real-time application node and right-click
node Groupings.

2 Click New Signal Group.

The Add New Signal Group Item dialog box appears.
3 In the Add New Signal Group Item dialog box, enter a name in the Name text box,

for example signalgroup1.sig. In the Location text box, enter a folder for the
group file.

4 Click OK.

A new signal group appears, along with its Signal Group workspace.
5 In the Applications pane, expand the real-time application node and then expand

node Model Hierarchy.
6 Select the model node and then click the View Signals icon on the toolbar.

The Signals workspace opens, showing a table of signals with properties and actions.
7 In the Signals workspace, to add signal Signal Generator to signalgroup1.sig,

drag signal Signal Generator to the signalgroup1.sig properties workspace.
8 Add signal Integrator1 to signalgroup1.sig in the same way.

 Create Signal Groups Using Simulink Real-Time Explorer

5-51

9
Press Enter, and then click the Save icon on the toolbar.

When you are monitoring a signal group, you can change the output format of the
group by selecting one of the options in the Format column. See“Signal Group
Monitoring Formats” on page 5-13.

• For more on monitoring individual signals in the group, see “Monitor Signals Using
Simulink Real-Time Explorer” on page 5-4.

• For more on tracing individual signals using a target scope, see “Create Target Scopes
Using Simulink Real-Time Explorer” on page 5-29.

• For more on tracing individual signals using a host scope, see “Create Host Scopes
Using Simulink Real-Time Explorer” on page 5-53.

• For more on logging individual signals using a file scope, see “Create File Scopes
Using Simulink Real-Time Explorer” on page 5-75.

5 Signals and Parameters

5-52

• To make both workspaces visible at the same time, drag one workspace tab down

until the following icon appears in the middle of the dialog box: . Continue to drag
until the cursor reaches the required quadrant, and then release the mouse button.

• To save your Simulink Real-Time Explorer window layout, click File > Save Layout.
In a later session, you can click File > Restore Layout to restore your layout.

 Create Host Scopes Using Simulink Real-Time Explorer

5-53

Create Host Scopes Using Simulink Real-Time Explorer

You can create a virtual host scope on the target computer using Simulink Real-Time
Explorer. These scopes have the full capabilities of the Scope block in Host mode, but do
not persist past the current execution.

Note: For information on using host scope blocks, see “Configure Real-Time Host Scope
Blocks” on page 5-25 and “Host Scope Usage” on page 5-28.

This procedure uses the model xpcosc as an example. You must have already completed
the following setup:

1 Built and downloaded the real-time application to the target computer using
Simulink (on the toolbar).

2 Run Simulink Real-Time Explorer (command slrtexplr).
3 Connected to the target computer in the Targets pane (on the toolbar).
4 Set property Stop time to inf in the Applications pane (on the toolbar).

To configure a virtual host scope:

1 In the Scopes pane, expand the xpcosc node.
2 To add a host scope, select Host Scopes and then click the Add Scope icon on the

toolbar.

Under the Host Scopes node, the new scope is displayed, for example Scope 1.
3 Expand Scope 1 and then click the Properties icon on the toolbar.
4 In the Scope Properties pane, click Signals. Add signals from the Applications

Signals workspace.
5 In the Applications pane, expand the real-time application node and then node

Model Hierarchy.
6 Select the model node and then click the View Signals icon on the toolbar.
7 In the Signals workspace, to add signal Signal Generator to Scope1, drag signal

Signal Generator to the Scope1 properties workspace.

Add signal Integrator1 to Scope 1 in the same way.

5 Signals and Parameters

5-54

8 To view the host scope, select Scope 1 and then click the View Scope icon on the
toolbar.

The Host Scope Viewer window opens as a separate tab. The signals you add to the
scope appear at the top right of the viewer.

9 To start execution, click the real-time application and then click the Start icon on
the toolbar.

The real-time application starts running. No output appears on the host scope
viewer.

10 To start Scope 1, click Scope 1 in the Scopes pane and then click the Start Scope
icon on the toolbar.

 Create Host Scopes Using Simulink Real-Time Explorer

5-55

Output for signals Signal Generator and Integrator1 appears on the host scope
viewer.

11 To stop Scope 1, click Scope 1 in the Scopes pane and then click the Stop Scope
icon on the toolbar.

The signals shown on the target computer stop updating while the real-time
application continues running. The target computer monitor displays a message like
this message:

5 Signals and Parameters

5-56

Scope: 1, set to state 'interrupted'

12 To stop execution, click the real-time application and then click the Stop icon on
the toolbar.

The real-time application on the target computer stops running, and the target
computer displays messages like this message:

minimal TET: 0.0000006 at time 0.001250

maximal TET: 0.0000013 at time 75.405500

• To configure the host scope viewer, see “Configure the Host Scope Viewer” on page
5-57

• You can create a virtual host scope from the scope types list by clicking Add Scope
next to scope type Host Scopes.

• To group signals, see “Create Signal Groups Using Simulink Real-Time Explorer” on
page 5-50.

• To configure data sampling, see “Configure Scope Sampling Using Simulink Real-
Time Explorer” on page 5-34.

• To configure interactive scope triggering, see “Trigger Scopes Interactively Using
Simulink Real-Time Explorer” on page 5-37.

• To configure noninteractive scope triggering, see “Trigger Scopes Noninteractively
Using Simulink Real-Time Explorer” on page 5-40.

• To make both workspaces visible at the same time, drag one workspace tab down

until the following icon appears in the middle of the dialog box: . Continue to drag
until the cursor reaches the required quadrant, and then release the mouse button.

• To save your Simulink Real-Time Explorer window layout, click File > Save Layout.
In a later session, you can click File > Restore Layout to restore your layout.

• If a block is unnamed, Simulink Real-Time Explorer does not display signals or a node
for that block. To reference such a block:

• Provide an alphanumeric name for the block
• Rebuild and download the model to the target computer.
• Reconnect the MATLAB session to the target computer.

 Configure the Host Scope Viewer

5-57

Configure the Host Scope Viewer

You can customize the viewer for each host scope to facilitate your interaction with the
running model.

This procedure uses the model xpcosc as an example. You must have already completed
the procedure in “Create Host Scopes Using Simulink Real-Time Explorer” on page 5-53.
Target execution and scopes must be stopped.

1 In the Signals workspace, to add signal Integrator to host scope Scope1, drag
signal Integrator to the Host Scope Viewer display.

2 Start execution (on the Applications toolbar).
3 To start Scope 1, click the Start icon on the Host Scope Viewer toolbar.
4 To trigger Scope 1, click the Trigger icon on the Host Scope Viewer toolbar.

To trigger a capture interactively using the Trigger icon , first set the scope
Trigger Mode to Software or Scope. See “Trigger Scopes Interactively Using
Simulink Real-Time Explorer” on page 5-37.

5 In the Simulink Real-Time Host Scope Viewer, right-click anywhere in the axis area
of the viewer and then click Edit.

The Host Scope Viewer display parameter icons become enabled on the toolbar.
6 Adjust the Host Scope Viewer display using:

• Auto Scale — To scale the display to accommodate the top and bottom of the
Y-axis.

• Axes Scroll — To move the content up and down and right and left relative to
the axes. The axes scroll as required.

• Axes Zoom — To stretch and compress the X-axis and Y-axis.
• Zoom In — To zoom in on the current center of the display.
• Zoom Out — To zoom out from the current center of the display.
• Zoom Box — To select an area of interest in the display. When you release the

mouse button, the display zooms in upon the selected area.

5 Signals and Parameters

5-58

• Data Cursor — To display data values using a set of cross-hairs in the
display.

Data is displayed as the pair x-value,y-value, indicating the value at that
point on the display. You can drag the center of the cross hairs and observe the
value at each point.

• Legends — To toggle display of the signal names.
7 To stop Scope 1, click the Stop icon on the Host Scope Viewer toolbar.
8 Stop execution (on the Applications toolbar).

 Configure Target Scopes Using MATLAB Language

5-59

Configure Target Scopes Using MATLAB Language
Creating a scope object allows you to select and view signals using Simulink Real-Time
functions instead of the Simulink Real-Time user interface.

This procedure uses the Simulink model xpcosc as an example. To do this procedure,
you must have already built the real-time application forxpcosc and downloaded it to
the default target computer. It describes how to trace signals with target scopes.

1 Start running your real-time application. Type:

tg = slrt;

start(tg)

The target computer displays the following message:

System: execution started (sample time: 0.0000250)

2 To get a list of signals, type:

tg.ShowSignals = 'on'

The MATLAB window displays a list of the target object properties for the available
signals. For example, the signals for the model xpcosc are:

ShowSignals = on

 Signals = INDEX VALUE BLOCK NAME LABEL

 0 0.000000 Integrator1

 1 0.000000 Signal Generator

 2 0.000000 Gain

 3 0.000000 Integrator

 4 0.000000 Gain1

 5 0.000000 Gain2

 6 0.000000 Sum

For more information, see “Monitor Signals Using MATLAB Language” on page 5-7.

5 Signals and Parameters

5-60

3 Create a scope to be displayed on the target computer. For example, to create a scope
with an identifier of 1 and a scope object name of sc1, type:

sc1 = addscope(tg, 'target', 1)

4 List the properties of the scope object. For example, to list the properties of the scope
object sc1, type:

sc1

The MATLAB window displays a list of the scope object properties. The scope
properties Time and Data are not accessible with a target scope.

Simulink Real-Time Scope Object

 Application = xpcosc

 ScopeId = 1

 Status = Interrupted

 Type = Target

 NumSamples = 250

 NumPrePostSamples = 0

 Decimation = 1

 TriggerMode = FreeRun

 TriggerSignal = -1

 TriggerLevel = 0.000000

 TriggerSlope = Either

 TriggerScope = 1

 TriggerSample = -1

 Mode = Redraw (Graphical)

 YLimit = Auto

 Configure Target Scopes Using MATLAB Language

5-61

 Grid = On

 Signals = no Signals defined

5 Add signals to the scope object. For example, to add Integrator1 and Signal
Generator, type:

addsignal(sc1, [0,1])

The target computer displays the following messages:

Scope: 1, signal 0 added

Scope: 1, signal 1 added

After you add signals to a scope object, the signals are not shown on the target
display until you start the scope.

6 Start the scope. For example, to start the scope sc1, type:

start(sc1)

The target display plots the signals after collecting each data package. During this
time, you can observe the behavior of the signals while the scope is running.

7 Stop the scope. Type:

stop(sc1)

The signals shown on the target computer stop updating while the real-time
application continues running. The target computer displays the following message:

Scope: 1, set to state 'interrupted'

8 Stop the real-time application. In the MATLAB window, type:

stop(tg)

The real-time application on the target computer stops running. The target computer
displays the following messages:

minimal TET: 0.000023 at time 1313.789000

maximal TET: 0.000034 at time 407.956000

5 Signals and Parameters

5-62

Trace Signals Using Simulink External Mode

You can use Simulink external mode to establish a communication channel between your
Simulink block diagram and your real-time application. The block diagram becomes a
user interface to your real-time application. Simulink scopes can display signal data from
the real-time application, including from models referenced inside a top model. You can
control which signals to upload through the External Signal & Triggering dialog box (see
“Select Signals to Upload” and “Control External Mode Operations”).

Note: Do not use Simulink external mode while Simulink Real-Time Explorer is running.
Use only one interface or the other.

This procedure uses the model xpcosc as an example. xpcosc contains a Simulink
Scope block.

1 In the MATLAB window, type xpcosc.
2 In the Simulink window, from the Code menu, select External Mode Control

Panel.
3 In the External Mode Control Panel dialog box, click the Signal & Triggering

button.
4 In the External Signal & Triggering dialog box, set the Source parameter to

manual.
5 Set the Mode parameter to normal. In this mode, the scope acquires data

continuously.
6 Select the Arm when connecting to target check box.
7 In the Delay box, enter 0.
8 In the Duration box, enter the number of samples for which external mode is to log

data, for example 1000.

The External Signal & Triggering dialog box looks like this figure.

 Trace Signals Using Simulink External Mode

5-63

9 Click Apply, and then Close.
10 In the External Mode Control Panel dialog box, click OK.
11 In the Simulink toolbar, increase the simulation stop time to, for example, 50.
12 From the File menu, select Save As and enter a file name. For example, enter

xpc_osc6, and then click OK.
13 In the Simulink window, click Simulation > Mode > External. A check mark

appears next to the menu item External, indicating that Simulink external mode is
activated.

14 If a Scope window is not displayed for the Scope block, double-click the Scope block.
15 Build and download the model to the target computer.
16 On the toolbar, click the Connect To Target icon .

5 Signals and Parameters

5-64

The current Simulink model parameters are downloaded from the development
computer to the real-time application.

17 To start the simulation, click the Run icon on the toolbar.

The real-time application begins running on the target computer. The Scope window
displays plotted data.

18 To stop the simulation, click the Stop icon on the toolbar.

 External Mode Usage

5-65

External Mode Usage

• When setting up signal triggering (Source set to signal), explicitly specify the element
number of the signal in the Trigger signal:Element box. If the signal is a scalar,
enter a value of 1. If the signal is a wide signal, enter a value from 1 to 10. When
uploading Simulink Real-Time signals to Simulink scopes, do not enter Last or Any
in this box.

• The Direction:Holdoff value does not affect the Simulink Real-Time signal
uploading feature.

• Attempting to upload information from buses and virtual signals inside a reference
model generates a warning.

5 Signals and Parameters

5-66

Trace Signals Using a Web Browser
The Web browser interface allows you to visualize data using a user interface.

After you connect a web browser to the target computer, you can use the scopes page to
add, remove, and control scopes on the target computer:

1 In the left frame, click the Scopes button. The browser loads the Scopes List pane
into the right frame.

2 Click the Add Scope button.

A target scope is created and displayed on the target computer. The Scopes pane
displays a list of the scopes present. You can add a scope, remove existing scopes,
and configure the scopes from this page.

To create a host scope, use the drop-down list next to the Add Scope button to select
Host. This item is set to Target by default.

3 Click the Edit button.

From the scope editing pane, you can configure and control the scope.
4 Click the Add Signals button. The browser displays an Add New Signals list.
5 Select the check boxes next to the signal names, and then click Apply. A Remove

Existing Signals list is added above the Add New Signals list.

You do not have to stop a scope to change scope parameters. If the scope is running, the
web interface stops the scope automatically and then restarts it when the changes are
made. It does not restart the scope if the state was originally stopped.

The Get Data button becomes available under these circumstances:

• The host scope is stopped (Scope State is set to Interrupted)
• The host scope finishes one cycle of acquisition (Scope State is set to Finished).

If you click the Get Data button, the scope data is retrieved in comma-separated value
(CSV) format. The signals in the scope are spread across columns. Each row corresponds
to one sample of acquisition. The first column corresponds to the time each sample was
acquired.

If Scope State is set to Interrupted, the scope was stopped before it completed a full
cycle of acquisition. The number of rows in the CSV data still correspond to a full cycle.
The last few rows (for which data was not acquired) are set to 0.

 Signal Logging Basics

5-67

Signal Logging Basics

Signal logging acquires signal data during a real-time run and stores it on the target
computer. After you stop the real-time application, you transfer the data from target
computer to development computer for analysis. Signal logging is also known as real-
time data streaming to the target computer. You can plot and analyze the data, and later
save it to a disk on the development computer.

Simulink Real-Time signal logging samples at the base sample time. If you have a model
with multiple sample rates, add Simulink Real-Time scopes to the model to sample
signals at the required sample rates.

• The Simulink Real-Time software does not support logging data with decimation.
• Simulink Real-Time Explorer works with multidimensional signals in column-major

format.
• Some signals are not observable. See “Nonobservable Signals and Parameters” on

page 5-125.

You can log signals using the following methods:

• File scopes and outports in the model
• Virtual file scopes in Simulink Real-Time Explorer
• MATLAB language
• A web browser

5 Signals and Parameters

5-68

Configure Real-Time File Scope Blocks

Simulink Real-Time includes a specialized Scope block that you can configure to save
signal and time data to a file on the target computer hard drive, flash drive, or removable
drive. Add a Scope block to the model, select Scope type File, and then configure the
other parameters as described in the following procedure.

• Do not confuse Simulink Real-Time Scope blocks with standard Simulink Scope
blocks.

• For more information about using Simulink Real-Time Scope blocks, see “Simulink
Real-Time Scope Usage” on page 5-23.

• For more information about target scopes, see “File Scope Usage” on page 5-73.
• This procedure uses the model xpc_osc2 as an example.

The example model is stored in the documentation examples folder. To access the
model, type:

addpath(fullfile(matlabroot,'help','toolbox','xpc',...

 'examples'));

1 In the MATLAB window, type xpc_osc2.
2 In the Simulink block diagram, double-click the block labeled Scope.

The Block Parameters: Scope dialog box opens. By default, the target scope dialog
box is displayed.

3 In the Scope number box, a unique number is displayed that identifies the scope.
This number is incremented each time you add a Simulink Real-Time scope.

This number identifies the Simulink Real-Time Scope block and the scope screen on
the development or target computer.

4 From the Scope type list, select File. The updated dialog box opens.
5 Caution Copy previously acquired data to the development computer before starting

the scope. The software overwrites previously acquired data in files of the specified
name or name pattern when the file scope restarts.

To start the scope automatically when the real-time application executes, select the
Start scope when application starts check box.

 Configure Real-Time File Scope Blocks

5-69

In Stand Alone mode, this setting is mandatory because the development computer
is not available to issue a command to start scopes.

6 In the Number of samples box, enter the number of values to be acquired in a data
package. This parameter works with the AutoRestart check box. If you select the
AutoRestart box, the file scope collects data up to Number of samples, and then
repeats, overwriting the buffer. If you do not select the AutoRestart box, the file
scope collects data only up to Number of samples, and then stops.

7 In the Number of pre/post samples box, enter the number of samples to save
or skip. To save N samples before a trigger event, specify the value -N. To skip N
samples after a trigger event, specify the value N. The default is 0.

8 In the Decimation box, enter a value to indicate that data is collected at each
sample time (1) or at less than every sample time (2 or greater).

9 From the Trigger mode list, select FreeRun, Software Triggering, Signal
Triggering, or Scope Triggering.

• If you select FreeRun or Software Triggering, you do not need to enter
additional parameters.

• If you select Signal Triggering, then enter the following additional
parameters, as required:

• In the Trigger signal box, enter the index of a signal previously added to the
scope.

This parameter does not apply if the Add signal port to connect a signal
trigger source check box is selected.

• (Alternatively) Click the Add signal port to connect a signal trigger
source check box, then connect an arbitrary trigger signal to the port
Trigger signal.

• In the Trigger level box, enter a value for the signal to cross before
triggering.

• From the Trigger slope list, select one of Either, Rising, or Falling.
• If you select Scope Triggering, then enter the following additional

parameters, as required:

• In the Trigger scope number box, enter the scope number of a Scope block.
If you use this trigger mode, add a second Scope block to your Simulink model.

5 Signals and Parameters

5-70

• To trigger one scope on a specific sample of another scope, enter a value
in Sample to trigger on (-1 for end of acquisition). The default value
of 0 indicates that the triggering scope and the triggered scope start
simultaneously.

For more information on this field, see “Trigger One Scope with Another
Scope” on page 11-23.

10 In the Filename box, enter a name for the file to contain the signal data.

By default, the target computer writes the signal data to C:\data.dat. For more
about files and file names, see “File Scope Usage” on page 5-73.

11 From the Mode list, select either Lazy or Commit.

With the Commit mode, each file write operation simultaneously updates the FAT
entry for the file. The file system maintains the actual file size after each write. With
the Lazy mode, the FAT entry is updated only when the file is closed.

If your system stops responding, you lose WriteSize bytes of data.
12 In the WriteSize box, enter the block size, in bytes, of the data chunks. This

parameter specifies that a memory buffer of length Number of samples is written to
the file in chunks of size WriteSize. By default, this parameter is 512 bytes. Using a
block size that is the same as the disk sector size improves performance.

If your system stops responding, you lose WriteSize bytes of data.
13 In the Number of samples box, enter the number of values to be acquired in a data

package.
14 When you select the AutoRestart check box, the file scope:

a Collects up to Number of samples data samples.
b Writes the buffer to the signal data file.
c Starts over again, appending the new data to the end of the signal data file.

When you clear the AutoRestart check box, the file scope:

a Collects up to Number of samples data samples.
b Writes the buffer to the signal data file.
c Stops collecting data samples.

 Configure Real-Time File Scope Blocks

5-71

If the named signal data file exists when the file scope starts, the Simulink Real-
Time software overwrites the old data with the new signal data.

The file scope dialog box looks like this figure.

5 Signals and Parameters

5-72

15 Click OK.
16 From the File menu, click Save As. The model is saved as xpc_osc2.

 File Scope Usage

5-73

File Scope Usage

This topic describes usage issues unique to file scopes. For issues common to all scope
types, see “Simulink Real-Time Scope Usage” on page 5-23.

• Simulink Real-Time supports eight file scopes. Each file scope can contain as many
signals as the target computer resources can support.

• At most eight files can be open on the target computer at the same time.
• The largest single file that you can create is 4 GB.
• Copy previously acquired data to the development computer before starting the scope.

When the file scope starts, the software overwrites previously acquired data in files of
the specified name or name pattern.

• After real-time execution, the file scope software generates a signal data
file on the target computer, even if it is running in Stand Alone mode.
To access the contents of the signal data file that a file scope creates,
use the SimulinkRealTime.fileSystem object from a development
computer MATLAB window. To view or examine the signal data, use the
SimulinkRealTime.utils.getFileScopeData utility and the plot function.
Saving signal data to files lets you recover signal data from a previous run in the
event of system failure.

The signal data file can quickly increase in size. To gauge the growth rate for the file,
examine the file size between runs. If the signal data file grows beyond the available
space on the disk, the signal data is corrupted.

• File names on the target computer are limited to eight characters in length, not
counting the file extension. If the name is longer than eight characters, the software
truncates it to six characters and adds '~1' to the end of the file name.

If you enter just the file name, the file appears in folder C:\. To put the file in a
folder, create the folder separately using the target computer command line or the
SimulinkRealTime.fileSystem.mkdir command.

You can configure the scope to generate multiple, dynamically named files in one
session.

• The file scope acquires data and writes it to the file named in the FileName
parameter. The scope acquires the first N samples into a memory buffer of size given
by the Number of Samples parameter. The scope writes data from the memory
buffer to the file in blocks of size given by the WriteSize parameter.

5 Signals and Parameters

5-74

If you select the AutoRestart check box, the scope starts over, overwriting the
memory buffer. The additional data is appended to the end of the existing file.

If you do not select the AutoRestart box, the scope collects data only up to the
number of samples, and then stops.

• When real-time execution stops without an error, both the Lazy and Commit settings
of the Mode box have the same result. Both settings cause the model to open a
file, write signal data to the file, and close that file at the end of the session. The
differences are in when the software updates the FAT entry for the file.

• In Commit mode, the FAT entry and the actual file size are updated during each
file write operation.

• In Lazy mode, the FAT entry and the actual file size are updated only when the
file is closed and not during each file write operation.

Lazy mode is faster than Commit mode. However, if the target computer enters an
error state, the system can stop responding before the file is closed. In Lazy mode, the
actual file size can be lost, even though the file was written. You can lose an amount
of data equivalent to the setting of the WriteSize parameter.

• Select the type of trigger event in the Block Parameters: Scope dialog box by setting
Trigger Mode to Signal Triggering, Software Triggering, or Scope
Triggering.

The number of samples N to log after triggering an event is equal to the value that you
entered in the Number of Samples parameter.

See Also
SimulinkRealTime.fileSystem | SimulinkRealTime.fileSystem.mkdir |
SimulinkRealTime.utils.getFileScopeData

Related Examples
• “Log Signal Data into Multiple Files” on page 5-82

More About
• “Using SimulinkRealTime.fileSystem Objects” on page 12-4

 Create File Scopes Using Simulink Real-Time Explorer

5-75

Create File Scopes Using Simulink Real-Time Explorer

You can create a virtual file scope on the target computer using Simulink Real-Time
Explorer. These scopes have the full capabilities of the Scope block in File mode, but do
not persist past the current execution.

Note: For information on using file scope blocks, see “Configure Real-Time File Scope
Blocks” on page 5-68 and “File Scope Usage” on page 5-73.

This procedure uses the model xpcosc as an example. You must have already completed
the following setup:

1 Built and downloaded the real-time application to the target computer using
Simulink (on the toolbar).

2 Run Simulink Real-Time Explorer (command slrtexplr).
3 Connected to the target computer in the Targets pane (on the toolbar).
4 Set property Stop time to inf in the Applications pane (on the toolbar).

To configure a virtual file scope:

1 In the Scopes pane, expand the xpcosc node.
2 To add a file scope, select File Scopes, and then click the Add Scope icon on the

toolbar.
3 Expand Scope 1, and then click the Properties icon on the toolbar.
4 In the Scope Properties pane, click Signals.

Add signals from the Applications Signals workspace.
5 In the Applications pane, expand both the real-time application node and the node

Model Hierarchy.
6 Select the model node and then click the View Signals icon on the toolbar.
7 In the Signals workspace, to add signal Signal Generator to Scope1, drag signal

Signal Generator to the Scope1 properties workspace.
8 Add signal Integrator1 to Scope 1 in the same way.

5 Signals and Parameters

5-76

9 In the Scope Properties pane, click File.
10 Enter a name in the File name text box, for example scope1.dat.
11 Select the AutoRestart check box.
12 Leave the Dynamic File Mode check box cleared.

For information on using Dynamic File Mode to generate multiple, dynamically
named files in one session, see “Log Signal Data into Multiple Files” on page
5-82.

13 To start execution, click the real-time application and then click the Start icon on
the toolbar.

14 Caution Copy previously acquired data to the development computer before starting
the scope. The software overwrites previously acquired data in files of the specified
name or name pattern when the file scope starts.

To start Scope 1, click Scope 1 in the Scopes pane, and then click the Start Scope
icon on the toolbar.

15 To stop Scope 1, click Scope 1 in the Scopes pane, and then click the Stop Scope
icon on the toolbar.

For file scopes, before adding or removing signals, stop the scope first.
16 To stop execution, click the real-time application, and then click the Stop icon on

the toolbar.
17 To view the file that you generated, in the Targets pane, expand the target

computer and then double-click File System.
18 Select C:\. The dialog box looks like this figure.

 Create File Scopes Using Simulink Real-Time Explorer

5-77

19 To retrieve the file from the target computer, select the file in the target computer
File System pane. Drag it to the MATLAB Current Folder pane or to a Windows
Explorer window.

• To configure file scopes, see “Configure File Scopes Using Simulink Real-Time
Explorer” on page 5-79.

5 Signals and Parameters

5-78

• To retrieve the file programmatically from the target computer for analysis, see
“Using SimulinkRealTime.fileSystem Objects” on page 12-4.

• To rename file SCOPE1.DAT, right-click the file name, select Rename, type the new
name in the text box, and then click Enter.

To delete file SCOPE1.DAT, right click the file name and select Delete.
• You can create a virtual file scope from the list of scope types by clicking Add Scope

next to scope type File Scopes.
• To group signals, see “Create Signal Groups Using Simulink Real-Time Explorer” on

page 5-50.
• To configure data sampling, see “Configure Scope Sampling Using Simulink Real-

Time Explorer” on page 5-34.
• To configure scope triggering, see “Trigger Scopes Interactively Using Simulink Real-

Time Explorer” on page 5-37 and “Trigger Scopes Noninteractively Using Simulink
Real-Time Explorer” on page 5-40.

• To make both workspaces visible at the same time, drag one workspace tab down

until the following icon appears in the middle of the dialog box: . Continue to drag
until the cursor reaches the required quadrant, and then release the mouse button.

• To save your Simulink Real-Time Explorer window layout, click File > Save Layout.
In a later session, you can click File > Restore Layout to restore your layout.

• If a block is unnamed, Simulink Real-Time Explorer does not display signals or a node
for that block. To reference such a block:

• Provide an alphanumeric name for the block
• Rebuild and download the model to the target computer.
• Reconnect the MATLAB session to the target computer.

 Configure File Scopes Using Simulink Real-Time Explorer

5-79

Configure File Scopes Using Simulink Real-Time Explorer
You can configure your file scopes to facilitate data logging. You can configure a file scope
whether you added a Scope block to your model or added the scope at run time.

This procedure uses the model xpcosc as an example. You must have already completed
the procedure in “Create File Scopes Using Simulink Real-Time Explorer” on page 5-75.
Target execution and scopes must be stopped.

1 Select Scope 1, and then open the Properties pane (on the Scopes toolbar).
2 In the Scope 1 Properties pane, click File.
3 Enter a name in the File name text box, for example scope2.dat.

File names on the target computer are limited to eight characters in length, not
counting the file extension. If the name is longer than eight characters, the software
truncates it to six characters and adds '~1' to the end of the file name.

If you enter just the file name, the file appears in folder C:\. To put the file in a
folder, create the folder separately using the target computer command line or
MATLAB language (see SimulinkRealTime.fileSystem.mkdir).

If a file with this name exists when you start the file scope, the file scope overwrites
the old data with the new data.

4 Select File mode Commit.

The default File mode is Lazy. When real-time execution stops without an error,
both the Lazy and Commit settings of the Mode box have the same result. Both
settings cause the model to open a file, write signal data to the file, and close that file
at the end of the session. The differences are in when the software updates the FAT
entry for the file.

• In Commit mode, the FAT entry and the actual file size are updated during each
file write operation.

• In Lazy mode, the FAT entry and the actual file size are updated only when the
file is closed and not during each file write operation.

Lazy mode is faster than Commit mode. However, if the target computer enters an
error state, the system can stop responding before the file is closed. In Lazy mode,
the actual file size can be lost, even though the file was written. You can lose an
amount of data equivalent to the setting of the WriteSize parameter.

5 Signals and Parameters

5-80

5 Select the AutoRestart check box.

• When you select AutoRestart, the file scope collects data up to the number of
samples, and then restarts. It appends the new data to the end of the file.

• When you clear AutoRestart, the file scope collects data up to the number of
samples, and then stops.

6 Leave the Dynamic File Mode check box cleared.

For information on using Dynamic File Mode to generate multiple, dynamically
named files in one session, see “Log Signal Data into Multiple Files” on page
5-82.

7 Leave Write Size set to the default value of 512.

Using a block size that is the same as the disk sector size improves performance.
8 Leave Max write file size set to the default value, which is a multiple of Write

Size.
9 Start execution (on the Applications toolbar).
10 Caution The software overwrites previously acquired data in files of the specified

name or name pattern when the file scope starts. Copy previously acquired data to
the development computer before starting the scope, otherwise it is lost.

Start Scope 1(on the Scopes toolbar). Let it run for up to a minute.
11 Stop Scope 1 (on the Scopes toolbar).
12 Stop execution (on the Applications toolbar).

 Configure File Scopes Using Simulink Real-Time Explorer

5-81

13 To retrieve the file from the target computer, select the file in the target computer
File System pane and drag it to the MATLAB Current Folder pane or to a
Windows Explorer window.

• To rename file SCOPE2.DAT, right-click the file name, select Rename, type the new
name in the text box, and then click Enter.

• To delete file SCOPE2.DAT, right-click the file name and select Delete.
• To retrieve the file programmatically from the target computer for analysis, see

“Using SimulinkRealTime.fileSystem Objects” on page 12-4.

5 Signals and Parameters

5-82

Log Signal Data into Multiple Files

You can acquire signal data to store in multiple, dynamically named files on the target
computer. You can then examine one file while the scope continues to acquire data to
store in other files. To acquire data for multiple files, add a file scope to the real-time
application, and then configure that scope to log signal data to multiple files.

Using model xpcosc, complete the setup tasks in “Create File Scopes Using Simulink
Real-Time Explorer” on page 5-75.

1 In Simulink Real-Time Explorer, in the Scopes pane, expand the xpcosc node.
2 Select File Scopes and expand node File Scopes.
3 Expand Scope 1 and then click the Properties icon on the toolbar.
4 In the Scope Properties pane, click File.
5 To enable the file scope to create multiple log files based on the same name, in the

File name box, enter a name like scope1_<%>.dat.

This sequence directs the software to create up to 9 log files, scope1_1.dat to
scope1_9.dat, on the target computer file system.

You can configure the file scope to create up to 99999999 files (<%%%%%%%%>.dat).
The length of a file name, including the specifier, cannot exceed eight characters. See
property Filename of class SimulinkRealTime.fileSystem.

6 Select the AutoRestart and Dynamic File Mode check boxes.
7 In the Max write file size box, enter a value to limit the size of the signal log files.

This value must be a multiple of the Write Size value. For example, if the write size
is 512, enter 4096 to limit each log file size to 4096 bytes.

8 To start execution, click the real-time application and then click the Start icon on
the toolbar.

9 Caution Copy previously acquired data to the development computer before starting
the scope. The software overwrites previously acquired data in files of the specified
name or name pattern when the file scope starts.

To start Scope 1, click Scope 1 in the Scopes pane and then click the Start Scope
icon on the toolbar.

 Log Signal Data into Multiple Files

5-83

Let Scope 1 run for up to a minute.
10 To stop Scope 1, click Scope 1 in the Scopes pane and then click the Stop Scope

icon on the toolbar.
11 To stop execution, click the real-time application and then click the Stop icon on

the toolbar.
12 To view the files that you generated, in the Targets pane, expand the target

computer, and then double-click File System.
13 Select C:\. The dialog box looks like this figure.

5 Signals and Parameters

5-84

The software creates a log file named SCOPE1_1.DAT and writes data to that file.
When the size of the first file reaches 4096 bytes (Max write file size), the software
closes the first file and creates the second file, SCOPE1_2.DAT. When the size of the
second file reaches 4096 bytes, the software creates the third file, the fourth file, and
so on.

 Log Signal Data into Multiple Files

5-85

If the real-time application continues to collect data after the software closes
SCOPE1_9.DAT, the software reopens SCOPE1_1.DAT, SCOPE1_2.DAT, and so on,
overwriting the existing contents.

14 Drag each file from the target computer File System pane to the MATLAB Current
Folder pane or to a Windows Explorer window.

To retrieve the files programmatically from the target computer, see “Using
SimulinkRealTime.fileSystem Objects” on page 12-4.

5 Signals and Parameters

5-86

Log Signal Data Using Outport Block and Simulink Real-Time
Explorer

To use Simulink Real-Time Explorer for signal logging, add an Outport block to your
Simulink model. Activate logging on the Data Import/Export pane in the Configuration
Parameters dialog box.

This procedure begins with tutorial model xpc_osc3:

1 In the MATLAB window, type xpc_osc3. The xpc_osc3 model opens.
2 In the Simulink window, select and delete the Simulink Real-Time Scope block and

its connecting signal.
3 Click Simulation > Model Configuration Parameters.
4 Select node Data Import/Export.
5 Select the Signal logging check box.
6 In Signal logging format, select value Dataset.

 Log Signal Data Using Outport Block and Simulink Real-Time Explorer

5-87

7 From the File menu, click Save as. Enter xpc_osc4, and then click Save.
8 Click OK.
9 In the Simulink window, click the Build Model icon on the toolbar.
10 Run Simulink Real-Time Explorer using command slrtexplr.
11 Connect to the target computer in the Targets pane using the Connect icon on

the toolbar.
12 To start execution, click the real-time application, and then click the Start icon on

the toolbar.

The outputs are the signals connected to Simulink Outport blocks. The model
xpcosc has one Outport block, labeled 1. There are two states. This Outport block
shows the signals leaving the blocks labeled Integrator1 and Signal Generator.

5 Signals and Parameters

5-88

13 To stop execution, click the real-time application, and then click the Stop icon on
the toolbar.

14 Plot the signals from the Outport block and the states. In the MATLAB window,
type:

tg = slrt;

plot(tg.TimeLog, tg.Outputlog)

Values for the logs are uploaded to the development computer from the real-time
application on the target computer. To upload part of the logs, see the target object
method SimulinkRealTime.target.getlog.

The plotted output looks like this figure.

 Log Signal Data Using Outport Block and MATLAB Language

5-89

Log Signal Data Using Outport Block and MATLAB Language

You plot the outputs and states of your real-time application to observe the behavior of
your model when you vary the input states and model parameters. Before you configure
data logging, complete the following setup:

1 Before you build the real-time application, add Outport blocks to your Simulink
model. In the Data Import/Export pane of the Configuration Parameters
dialog box, select the Save to workspace check box . See “Configure Simulation
Parameters”.

2 To plot the task execution time, in the Simulink Real-Time Options pane of the
Configuration Parameters dialog box, verify that the Log Task Execution Time
check box is selected. This check box is selected by default. See “Add Simulink Real-
Time Scope Block”.

3 In the Simulink Real-Time Options pane of the Configuration Parameters
dialog box, set Signal logging buffer size in doubles to a value large enough to
accommodate the logged signals. The default is 100000. If the default buffer size is
not large enough, approximate the size using this formula:

Buffer size in doubles = 90% * Memory / sizeof(double)

Memory is the number of bytes available on the target computer after the kernel
starts. It is displayed in the upper-left corner of the target computer screen. For
example, for a Memory value of 2044MB, set Signal logging buffer size in doubles
to 255500000.

The Simulink Real-Time software calculates the number of samples N for a signal
as the value of Signal logging buffer size in doubles divided by the number of
logged signals (1 time, 1 task execution time ([TET]), number of outputs, number of
states). The scopes copy the last N samples from the log buffer to the target object
logs (tg.TimeLog, tg.OutputLog, tg.StateLog, and tg.TETLog).

After you build, download, and run a real-time application, you can plot the state and
output signals. This procedure uses the Simulink model xpc_osc4 as an example. You
must have already built and downloaded the real-time application for that model.

1 Assign tg to the target computer. In the MATLAB window, type:

tg = slrt;

2 Start the real-time application. In the MATLAB window, type:

5 Signals and Parameters

5-90

start(tg)

The real-time application starts and runs until it reaches the final time set in the
target object property tg.StopTime.

The outputs are the signals connected to Simulink Outport blocks. The model
xpcosc has one Outport block, labeled 1. There are two states. This Outport block
shows the signals leaving the blocks labeled Integrator1 and Signal Generator.

3 Plot the signals from the Outport block and the states. In the MATLAB window,
type:

plot(tg.TimeLog, tg.Outputlog)

Values for the logs are uploaded to the development computer from the real-time
application on the target computer. To upload part of the logs, see the target object
method SimulinkRealTime.target.getlog.

The plot shown is the result of a real-time execution. To compare this plot with a
plot for a non-real-time simulation, see “Simulate Simulink Model Using MATLAB
Language”.

 Log Signal Data Using Outport Block and MATLAB Language

5-91

4 In the MATLAB window, type:

plot(tg.TimeLog, tg.TETLog)

Values for the task execution time (TET) log are uploaded to the development
computer from the target computer. To upload part of the logs, see the target object
method SimulinkRealTime.target.getlog.

The TET plot shown is the result of a real-time run.

5 Signals and Parameters

5-92

The TET is the time to calculate the signal values for the model during each sample
interval. You can plot the TET to show under what circumstances subsystems are
executed and the additional CPU time required for those executions.

5 In the MATLAB window, type:

tg.AvgTET

The MATLAB interface displays information about the average task execution time,
for example:

ans =

 5.7528e-006

 Log Signal Data Using Outport Block and MATLAB Language

5-93

The percentage of CPU performance is the average TET divided by the sample time.

Each outport has an associated column vector in tg.OutputLog. You can access the data
that corresponds to a particular outport by specifying the column vector for that outport.
For example, to access the data that corresponds to Outport 2, use tg.outputlog(:,2).

5 Signals and Parameters

5-94

Configure File Scopes Using MATLAB Language

This procedure shows how to trace signals with file scopes using the Simulink model
xpcosc as an example. You must have already built and downloaded the real-time
application for this model. It also assumes that you are using a serial link.

Note: The signal data file can quickly increase in size. To gauge the growth rate of the
file, examine the file size between runs. If the signal data file grows beyond the available
space on the disk, the signal data is corrupted.

1 Create a target object tg that represents target computer TargetPC1. Type:

tg = SimulinkRealTime.target('TargetPC1')

2 To get a list of signals, type:

tg.ShowSignals = 'on'

The MATLAB window displays a list of the target object properties for the available
signals. For example, these signals are part of the model xpcosc:

ShowSignals = on

 Signals = INDEX VALUE BLOCK NAME LABEL

 0 0.000000 Integrator1

 1 0.000000 Signal Generator

 2 0.000000 Gain

 3 0.000000 Integrator

 4 0.000000 Gain1

 5 0.000000 Gain2

 6 0.000000 Sum

For more information, see “Monitor Signals Using MATLAB Language” on page 5-7.
3 Start running your real-time application. Type:

 Configure File Scopes Using MATLAB Language

5-95

start(tg)

The target computer displays the following message:

System: execution started (sample time: 0.0000250)

4 Create a scope to be displayed on the target computer. For example, to create a scope
with an identifier of 2 and a scope object name of sc2, type:

sc2 = addscope(tg, 'file', 2)

5 List the properties of the scope object. For example, to list the properties of the scope
object sc2, type sc2.

The MATLAB window displays a list of the scope object properties. Notice that the
scope properties Time and Data are not accessible with a target scope.

Simulink Real-Time Scope Object

 Application = xpcosc

 ScopeId = 2

 Status = Interrupted

 Type = File

 NumSamples = 250

 NumPrePostSamples = 0

 Decimation = 1

 TriggerMode = FreeRun

 TriggerScope = 2

 TriggerSample = 0

 TriggerSignal = -1

 TriggerLevel = 0.000000

 TriggerSlope = Either

5 Signals and Parameters

5-96

 ShowSignals = off

 FileName = unset

 Mode = Lazy

 WriteSize = 512

 AutoRestart = off

 DynamicFileName = off

 MaxWriteFileSize = 536870912

No name is initially assigned to FileName. After you start the scope, Simulink Real-
Time assigns a name for the file to acquire the signal data. This name typically
consists of the scope object name, ScopeId, and the beginning letters of the first
signal added to the scope.

6 Add signals to the scope object. For example, to add Integrator1 and Signal
Generator, type:

addsignal(sc2, [4,5])

The target computer displays the following messages:

Scope: 2, signal 4 added

Scope: 2, signal 5 added

After you add signals to a scope object, the file scope does not acquire signals until
you start the scope.

7 Caution Copy previously acquired data to the development computer before starting
the scope. The software overwrites previously acquired data in files of the specified
name or name pattern when the file scope starts.

Start the scope. For example, to start scope sc2, type:

start(sc2)

The MATLAB window displays a list of the scope object properties. FileName is
assigned a default file name to contain the signal data for the file scope. This name

 Configure File Scopes Using MATLAB Language

5-97

typically consists of the scope object name, ScopeId, and the beginning letters of the
first signal added to the scope.

Application = xpcosc

 ScopeId = 2

 Status = Pre-Acquiring

 Type = File

 NumSamples = 250

 NumPrePostSamples = 0

 Decimation = 1

 TriggerMode = FreeRun

 TriggerScope = 2

 TriggerSample = 0

 TriggerSignal = 4

 TriggerLevel = 0.000000

 TriggerSlope = Either

 ShowSignals = on

 Signals = 4 : Integrator1

 5 : Signal Generator

 FileName = c:\sc7Integ.dat

 Mode = Lazy

 WriteSize = 512

 AutoRestart = off

 DynamicFileName = off

5 Signals and Parameters

5-98

 MaxWriteFileSize = 536870912

8 Stop the scope. Type:

stop(sc2)

9 Stop the real-time application. In the MATLAB window, type:

stop(tg)

The real-time application on the target computer stops running. The target computer
displays messages similar to the following:

minimal TET: 0.00006 at time 0.004250

maximal TET: 0.000037 at time 14.255250

To access the contents of the signal data file, use the Simulink Real-Time
file system object (SimulinkRealTime.fileSystem) from the development
computer MATLAB window. To view or examine the signal data, use the
SimulinkRealTime.utils.getFileScopeData utility and the plot function. For
more information, see “Using SimulinkRealTime.fileSystem Objects” on page 12-4.

 Log Signals Using a Web Browser

5-99

Log Signals Using a Web Browser

When you stop the model execution, you see another section of the web browser interface
where you can download logging data. This data is in comma-separated value (CSV)
format. The MATLAB interface reads CSV format using the dlmread function. Most
spreadsheet programs can read CSV format files.

You see this section of the web browser interface only if you have enabled data logging.
Buttons become available only for those logs (states, output, and TET) that are enabled.
If time logging is enabled, the first column of the CSV file is the time at which data
(states, output, and TET values) was acquired. If time logging is not enabled, only the
data is in the CSV file, without time information.

To perform data logging, first complete the following setup:

1 Before you build the real-time application, add Outport blocks to your Simulink
model. In the Data Import/Export pane of the Configuration Parameters
dialog box, select the Save to workspace check box . See “Configure Simulation
Parameters”.

2 To plot the task execution time, in the Simulink Real-Time Options pane of the
Configuration Parameters dialog box, verify that the Log Task Execution Time
check box is selected. This check box is selected by default. See “Add Simulink Real-
Time Scope Block”.

3 In the Simulink Real-Time Options pane of the Configuration Parameters
dialog box, set Signal logging buffer size in doubles to a value large enough to
accommodate the logged signals. The default is 100000. If the default buffer size is
not large enough, approximate the size using this formula:

Buffer size in doubles = 90% * Memory / sizeof(double)

Memory is the number of bytes available on the target computer after the kernel
starts. It is displayed in the upper-left corner of the target computer screen. For
example, for a Memory value of 2044MB, set Signal logging buffer size in doubles
to 255500000.

The Simulink Real-Time software calculates the number of samples N for a signal
as the value of Signal logging buffer size in doubles divided by the number of
logged signals (1 time, 1 task execution time ([TET]), number of outputs, number of
states). The scopes copy the last N samples from the log buffer to the target object
logs (tg.TimeLog, tg.OutputLog, tg.StateLog, and tg.TETLog).

5 Signals and Parameters

5-100

You plot the outputs and states of your real-time application to observe the behavior of
your model with different input signal values and parameter settings.

 Tune Parameters Using Simulink Real-Time Explorer

5-101

Tune Parameters Using Simulink Real-Time Explorer

You can use Simulink Real-Time Explorer to change parameters in your real-time
application while it is running or between runs. You do not need to rebuild the Simulink
model, set the Simulink interface to external mode, or connect the Simulink interface
with the real-time application.

Using model xpcosc, complete the setup tasks in “Create Host Scopes Using Simulink
Real-Time Explorer” on page 5-53.

1 Select the real-time application in the Applications pane (for example, xpcosc).
2 To start execution, click the real-time application and then click the Start icon on

the toolbar.
3 To start Scope 1, click Scope 1 in the Scopes pane and then click the Start Scope

icon on the toolbar.

5 Signals and Parameters

5-102

4 In the Applications pane, expand both the real-time application node and node
Model Hierarchy.

5 Select the model node, and then click the View Parameters icon on the toolbar.

The Parameters workspace opens, showing a table of parameters with properties and
actions.

6 Click the arrow next to the Gain for block Gain1. The Values text box opens,
containing the initial value 400.

 Tune Parameters Using Simulink Real-Time Explorer

5-103

7 Type 100 into the text box, and then press Enter.

To revert the Gain for block Gain1 to its previous value, click the Revert icon .
8

Click the Apply parameter value(s) changes icon .

The Simulink Real-Time Explorer window looks like this figure.

9 To stop Scope 1, click Scope 1 in the Scopes pane, and then click the Stop Scope
icon on the toolbar.

5 Signals and Parameters

5-104

10 To stop execution, click the real-time application, and then click the Stop icon on
the toolbar.

• To group parameters, see “Create Parameter Groups Using Simulink Real-Time
Explorer” on page 5-105

• To make both workspaces visible at the same time, drag one workspace tab down

until the following icon appears in the middle of the dialog box: . Continue to drag
until the cursor reaches the required quadrant, and then release the mouse button.

• To save your Simulink Real-Time Explorer window layout, click File > Save Layout.
In a later session, you can click File > Restore Layout to restore your layout.

 Create Parameter Groups Using Simulink Real-Time Explorer

5-105

Create Parameter Groups Using Simulink Real-Time Explorer

When testing a complex model composed of many reference models, you tune parameters
from multiple parts and levels of the model. To do so, create a parameter group.

This procedure uses the model xpcosc as an example. You must have already completed
the following setup:

1 Built and downloaded the real-time application to the target computer using
Simulink (on the toolbar).

2 Run Simulink Real-Time Explorer (command slrtexplr).
3 Connected to the target computer in the Targets pane (on the toolbar).

To create a parameter group:

1 In the Applications pane, expand the real-time application node, and then right-
click the Groupings node.

2 Click New Parameter Group.
3 In the Add New Parameter Group Item dialog box, enter a name in the Name text

box (for example, ParamGroup1.par). In the Location text box, enter a folder for
the group file.

4 Click OK. A new parameter group appears, along with its Parameter Group
workspace.

5 In the Applications pane, expand both the real-time application node and the node
Model Hierarchy.

6 Select the model node, and then click the View Parameters icon on the toolbar.

The Parameters workspace opens, showing a table of parameters with properties and
actions.

7 In the Parameters workspace, to add parameter Amplitude to ParamGroup1.par,
drag parameter Amplitude to the ParamGroup1.par properties workspace.

8 Add parameter Frequency to ParamGroup1.par in the same way.
9

Press Enter, and then click the Save icon on the toolbar.

5 Signals and Parameters

5-106

• To tune individual parameters in the selected group, see “Tune Parameters Using
Simulink Real-Time Explorer” on page 5-101.

• To make both workspaces visible at the same time, drag one workspace tab down

until the following icon appears in the middle of the dialog box: . Continue to drag
until the cursor reaches the required quadrant, and then release the mouse button.

• To save your Simulink Real-Time Explorer window layout, click File > Save Layout.
In a later session, you can click File > Restore Layout to restore your layout.

 Tune Parameters Using MATLAB Language

5-107

Tune Parameters Using MATLAB Language

You use the MATLAB functions to change block parameters. With these functions, you do
not need to set the Simulink interface to external mode. You also do not need to connect
the Simulink interface with the real-time application.

You can download parameters to the real-time application while it is running or between
runs. You can change parameters in your real-time application without rebuilding the
Simulink model and change them back to their original values. using Simulink Real-
Time functions.

This procedure uses the Simulink model xpcosc as an example. You must have already
created and downloaded the real-time application to the default target computer.

1 In the MATLAB window, type:

tg = slrt;

start(tg)

The target computer displays the following message:

System: execution started (sample time: 0.001000)

2 Display a list of parameters. Type:

tg.ShowParameters = 'on'

The ShowParameters command displays a list of properties for the target object.

ShowParameters = on

Parameters =

INDEX VALUE TYPE SIZE

PARAMETER

NAME BLOCK NAME

0 1000000 DOUBLE Scalar Gain Gain

1 400 DOUBLE Scalar Gain Gain1

2 1000000 DOUBLE Scalar Gain Gain2

3 0 DOUBLE Scalar

Initial

Condition Integrator

5 Signals and Parameters

5-108

4 0 DOUBLE Scalar Initial

Condition

Integrator1

5 4 DOUBLE Scalar Amplitude Signal

Generator

6 20 DOUBLE Scalar Frequency Signal

Generator

3 Change the gain. For example, to change the Gain1 block, type:

pt = setparam(tg, 1, 800)

The setparam method returns a structure that stores the parameter index, the
previous value, and the new value.

When you change parameters, the changed parameters in the target object are
downloaded to the real-time application. The development computer displays the
following message:

pt =

parIndexVec: 1

OldValues: 400

NewValues: 800

The real-time application runs. The plot frame updates the signals for the active
scopes.

4 Stop the real-time application. In the MATLAB window, type:

stop(tg)

The real-time application on the target computer stops running. The target computer
displays messages like the following:

minimal TET: 0.000023 at time 1313.789000

maximal TET: 0.000034 at time 407.956000

5 To reset to the previous values, type:

setparam(tg,pt.parIndexVec,pt.OldValues)

 Tune Parameters Using MATLAB Language

5-109

ans =

parIndexVec: 5

OldValues: 800

NewValues: 100

Note: Method names are case-sensitive and must be complete. Property names are not
case-sensitive and do not need to be complete, as long as they are unique.

5 Signals and Parameters

5-110

Tune Parameters Using Simulink External Mode

You use Simulink external mode to connect your Simulink model to your real-time
application. The model becomes a user interface to your real-time application. You set up
the Simulink interface in external mode to establish a communication channel between
your Simulink block window and your real-time application.

In Simulink external mode, when you change parameters in the Simulink model,
Simulink downloads those parameters to the real-time application while it is running.
You can change parameters in your program without rebuilding the Simulink model to
create a new real-time application.

After you download your real-time application to the target computer, you can connect
your Simulink model to the real-time application. This procedure uses the Simulink
model xpcosc as an example. You must have already built and downloaded the real-
time application for that model.

1 In the Simulink window, click Simulation > Mode > External. A check mark
appears next to the menu item External, and Simulink external mode is activated.

2 Click the Run icon on the toolbar.

The real-time application begins running on the target computer, and the target
computer displays the following message:

System: execution started (sample time: 0.000250)

3 From the Simulation block diagram, double-click the block labeled Gain1
4 In the Block Parameters: Gain1 parameter dialog box, the Gain text box, enter 800.

Click OK.

When you change a model parameter and click OK, the changed parameters in the
model are downloaded to the real-time application.

5 From the Simulation menu, click Disconnect from Target.

The Simulink model is disconnected from the real-time application. If you then
change a block parameter in the Simulink model, the real-time application does not
change.

6 In the MATLAB window, type:

tg = slrt('TargetPC1')

 Tune Parameters Using Simulink External Mode

5-111

stop(tg)

The real-time application on the target computer stops running, and the target
computer displays the following messages:

minimal TET: 0.000023 at time 1313.789000

maximal TET: 0.000034 at time 407.956000

5 Signals and Parameters

5-112

Tune Parameters Using a Web Browser

The Parameters pane displays the tunable parameters in your model. Row and column
indices for vector/matrix parameters are also shown.

After you connect a web browser to the target computer, use the Parameters page to
change parameters in your real-time application while it is running.

1 In the left frame, click Parameters. The browser loads the Parameter List pane
into the right frame.

If the parameter is a scalar parameter, the current parameter value is shown in a
box that you can edit.

If the parameter is a vector or matrix, click a button to open another page that
displays the vector or matrix. You can then edit the parameter.

2 Enter a new parameter value into one or more of the parameter boxes, and then click
Apply.

The new parameter values are uploaded to the real-time application.

 Save and Reload Parameters Using MATLAB Language

5-113

Save and Reload Parameters Using MATLAB Language

After you have a set of real-time application parameter values, save those values to a file
on the target computer. You can then later reload these parameter values to the same
real-time application.

You can save parameters from your real-time application while the real-time application
is running or between runs. You can save and restore parameters in your real-time
application without rebuilding the Simulink model. Load parameters to the same model
from which you save the parameter file. If you load a parameter file to a different model,
the behavior is undefined.

You save and restore parameters with the target object methods saveparamset and
loadparamset.

Requirements:

• You have a real-time application object named tg.
• You have assigned tg to the target computer.
• You have downloaded a real-time application to the target computer.
• You have parameters to save. For more information, see:

• “Tune Parameters Using MATLAB Language” on page 5-107
• “Tune Parameters Using Simulink External Mode” on page 5-110
• “Tune Parameters Using a Web Browser” on page 5-112

Save the Current Set of Real-Time Application Parameters

To save a set of parameters to a real-time application, use the saveparamset method.
The real-time application can be stopped or running.

1 Identify the set of parameter values that you want to save.
2 Select a descriptive file name for the parameters. For example, use the model name

in the file name.
3 In the MATLAB window, type either

tg = slrt;

5 Signals and Parameters

5-114

saveparamset(tg, 'xpc_osc4_param1')

The Simulink Real-Time software creates a file named xpcosc4_param1 in the
current folder of the target computer, for example, C:\xpcosc4_param1.

• To restore parameter values to a real-time application, see “Load Saved Parameters to
a Real-Time Application” on page 5-114.

• To list the parameters and values stored in the parameter file, see “List the Values of
Parameters Stored in a File” on page 5-115.

Load Saved Parameters to a Real-Time Application

To load a set of saved parameters to a real-time application, use the loadparamset
method.

Load parameters to the same model from which you save the parameter file. If you load a
parameter file to a different model, the behavior is undefined.

This section assumes that you have a parameters file saved from an earlier run of
saveparamset (see “Save the Current Set of Real-Time Application Parameters” on
page 5-113).

1 From the collection of parameter value files on the target computer, select the one
that contains the parameter values you want to load.

2 In the MATLAB window, type:

tg = slrt;

loadparamset(tg, 'xpc_osc4_param1')

The Simulink Real-Time software loads the parameter values into the real-time
application.

Tip

• To load the parameter set automatically during startup, see “Load a parameter set
from a file on the designated target file system”.

• To list the parameters and values stored in the parameter file, see “List the Values of
Parameters Stored in a File” on page 5-115.

 Save and Reload Parameters Using MATLAB Language

5-115

List the Values of Parameters Stored in a File

To list parameters and their values, load the file for a real-time application, and then
turn on the ShowParameters target object property.

You must have a parameters file saved from an earlier run of saveparamset (see “Save
the Current Set of Real-Time Application Parameters” on page 5-113).

1 Stop the real-time application. In the MATLAB window, type:

stop(tg)

2 Load the parameter file. Type:

tg = slrt;

loadparamset(tg, 'xpc_osc4_param1');

3 Display a list of parameters. Type:

tg.ShowParameters = 'on'

The MATLAB window displays a list of parameters and their values for the target
object.

5 Signals and Parameters

5-116

Parameter Tuning Basics

With Simulink Real-Time, query and modify tunable parameters in your real-time
application as it is running, provided the parameters are observable.

Parameter tuning uses the C API files generated by Simulink Coder. The Simulink Coder
API provides a consistent interface to query and modify tunable parameters from the
development computer.

In the code that you generate from a model, there are these kinds of tunable parameters:

• Block parameter — Specify the value as a numeric expression. For example, suppose
that you specify the Gain parameter of a Gain block by the value 5/2. Gain is then
a tunable block parameter. Block parameters are observable only when you set the
Default parameter behavior option to Tunable. When using the MATLAB, C,
or .NET APIs, you identify a block parameter by the parameter name and the block
path in the model hierarchy.

• Model parameter — Workspace variable that you use to specify the values of one
or more block parameters in the model. For example, suppose that you specify the
Gain parameter by the variable A. A is a Simulink.Parameter object that contains
the value 3.57. A is then a tunable model parameter. When using the MATLAB, C,
or .NET APIs, you identify a model parameter by the variable name only.

Simulink Real-Time provides the same interface to query and modify tunable parameters
for both block parameters and model parameters. In this interface, a nonempty block
path and a parameter name represent a block parameter. An empty block path ("") and
a variable name represent a model parameter.

Model parameters that are structures are not observable with Simulink Real-Time.
For example, if the Gain field of a Gain block contains the value A.Gain, where A is a
structure, you cannot tune that block parameter.

You can improve overall efficiency by setting the Default parameter behavior option
to Inlined in the Signals and Parameters pane of the Optimization node. By
default, you cannot tune inlined parameters. To declare some of the inlined parameters
as tunable, create Simulink.Parameter objects or use the settings in the Model
Parameter Configuration dialog box. For more information about inlined parameters, see
the Simulink Coder documentation.

 Parameter Tuning Basics

5-117

See Also
SimulinkRealTime.target.getparam | SimulinkRealTime.target.getparamid
| SimulinkRealTime.target.setparam

Related Examples
• “Configure Model to Tune Inlined Parameters” on page 5-118

More About
• “Nonobservable Signals and Parameters” on page 5-125

5 Signals and Parameters

5-118

Configure Model to Tune Inlined Parameters

This procedure describes how to mark parameters as inline parameters, and then how to
specify which of these parameters are tunable model parameters.

Note: You cannot tune inlined parameters that are structures.

The following procedure uses the Simulink model xpcosc as an example.

1 In the MATLAB Command Window, type xpcosc. The model is displayed in the
Simulink window.

2 Select the blocks containing the parameters that you want to tune. For example, this
procedure makes the Amplitude parameter of the Signal Generator block tunable.
To represent the amplitude, use the variable A.

3 Double-click the Signal Generator block, and then enter A for the Amplitude
parameter. Click OK.

4 In the MATLAB Command Window, assign a constant to that variable. For example,
type:

A = 4

The value is displayed in the MATLAB workspace.
5 From the Simulink window, click Simulation > Model Configuration

Parameters.
6 In the Configuration Parameters dialog box, select the Signals and Parameters

node under Optimization.
7 In the right pane, set Default parameter behavior to Inlined.

 Configure Model to Tune Inlined Parameters

5-119

8 Click Configure.

The Model Parameter Configuration dialog box opens. The MATLAB workspace
contains the constant you assigned to A.

9 Select the line that contains your constant. Click Add to table.

5 Signals and Parameters

5-120

Add the remaining global parameters that you want to tune.
10 Click Apply, and then click OK.
11 In the Configuration Parameters dialog box, click Apply, and then OK.
12 Save the model. For example, save it as xpc_osc5.
13 Build and download the model to your target computer.
14 To tune inline parameters, see either:

• “Tune Inlined Parameters Using Simulink Real-Time Explorer” on page 5-121
• “Tune Inlined Parameters Using MATLAB Language” on page 5-124

 Tune Inlined Parameters Using Simulink Real-Time Explorer

5-121

Tune Inlined Parameters Using Simulink Real-Time Explorer

This procedure describes how you can tune inlined parameters through the Simulink
Real-Time Explorer.

The procedure uses the model xpc_osc5 from “Configure Model to Tune Inlined
Parameters” on page 5-118 as an example. You must have already completed the setup
tasks in “Create Host Scopes Using Simulink Real-Time Explorer” on page 5-53.

1 Select the real-time application in the Applications pane (for example, xpc_osc5).
2 To start execution, click the real-time application, and then click the Start icon on

the toolbar.
3 To start Scope 1, click Scope 1 in the Scopes pane, and then click the Start Scope

icon on the toolbar.
4 In the Applications pane, expand both the real-time application node and the

Model Hierarchy node.
5 Select the model node, and then click the View Parameters icon on the toolbar.

The Parameters workspace opens, showing a table of parameters with properties and
actions.

6 Click the arrow next to parameter A for block Model Parameters. The Values text
box opens, containing the initial value 4.

The dialog box looks like this figure.

5 Signals and Parameters

5-122

7 Type 2 into the text box, and then press Enter.

To revert parameter A for block Model Parameters to its previous value, click the
Revert icon .

8
Click the Apply parameter value(s) changes icon .

The dialog box looks like this figure.

 Tune Inlined Parameters Using Simulink Real-Time Explorer

5-123

9 To stop Scope 1, click Scope 1 in the Scopes pane, and then click the Stop Scope
icon on the toolbar.

10 To stop execution, click the real-time application, and then click the Stop icon on
the toolbar.

5 Signals and Parameters

5-124

Tune Inlined Parameters Using MATLAB Language

This procedure describes how you can tune inlined parameters through the MATLAB
interface. You must have already built and downloaded the model from the topic
“Configure Model to Tune Inlined Parameters” on page 5-118 to the target computer. The
model must already be running.

You can tune inlined parameters using a parameter ID.

• To get the ID of the inlined parameter that you want to tune, use the getparamid
function. For the block_name parameter, leave a blank ('').

• To set the new value for the inlined parameter, use the setparam function .

1 Save the following code in a MATLAB file. For example, change_inlineA.

tg = slrt; %Create Simulink Real-Time object

pid = getparamid(tg, '', 'A'); %Get parameter ID of A

if isempty(pid) %Check value of pid.

 error('Could not find A');

end

setparam(tg, pid, 100); %If pid is valid, set parameter value.

2 Execute that MATLAB file. Type:

change_inlineA

3 To see the new parameter value, type:

tg.ShowParameters = 'on'

The tg object information is displayed, including the parameter lines:

NumParameters = 1

ShowParameters = on

Parameters = INDEX VALUE TYPE SIZE PARAMETER NAME BLOCK NAME

 0 100 DOUBLE Scalar A

 Nonobservable Signals and Parameters

5-125

Nonobservable Signals and Parameters

Nonobservable signals are signals that exist in the real-time application, but cannot be
monitored, traced, or logged from the development computer.

You cannot monitor, trace, or log the following types of signals:

• Virtual or bus signals (including signals from bus and virtual blocks). You can access
these signals from nonvirtual source blocks.

• To access a virtual signal, add a Gain block with gain 1.0 (unit gain) and observe
its output.

• To access a virtual bus, add a Gain block with unit gain to each individual signal.
• Signals that you have optimized with block reduction optimization. You can access

these signals by making them test points.
• Signals of complex or multiword data types.

Nonobservable parameters are parameters that exist in the real-time application, but
cannot be tuned from the development computer.

You cannot tune parameters of complex or multiword data types.

5 Signals and Parameters

5-126

Internationalization Issues

Simulink Real-Time inherits the internationalization support of the products it depends
upon: Simulink, Simulink Coder, and Embedded Coder. Signal and parameter names
that include Unicode® characters are displayed as expected in Simulink Real-Time
Explorer and at the MATLAB command line. In particular, when you use host scopes to
observe signals, the non-ASCII signal names are displayed as expected.

The Simulink Real-Time kernel does not support international (non-ASCII) characters. It
generates messages in English using ASCII characters. When interacting with the kernel
through the target computer keyboard, you identify signals and parameters by numerical
ID, not by name strings.

When you use target scopes to observe signals, the kernel replaces a signal label that
includes non-ASCII characters with the numerical ID. It replaces each non-ASCII
character in the block path (hierarchical signal name) with the character ?.

For example, assume that the signal with ID 1 appears in an English-language and a
Japanese-language version of the same model. In the English-language version, the
signal label is input1 and the block path is block1/block2. In the Japanese-language
version, the signal label is 入力1 and the block path is ブロック1/ブロック2.

• In single scope mode, the numeric portion of the screen contains this string for the
English-language version:

input1: block1/block2

It contains this string for the Japanese-language version:

1: ????1/????2

• In multiscope mode, the signal label above the scope contains this string for the
English-language version:

input1

It contains this string for the Japanese-language version:

1

6

Execution Modes

• “Execution Modes” on page 6-2
• “Interrupt Mode” on page 6-3
• “Polling Mode” on page 6-5

6 Execution Modes

6-2

Execution Modes

The Simulink Real-Time kernel has three mutually-exclusive execution modes. You can
execute the real-time application in one non-real-time mode and in two real-time modes.

• Freerun mode — To use this non-real-time mode, on the Simulink Real-Time
Options pane in the Configuration Parameters dialog box, set Execution mode to
Freerun.

In this mode, the real-time application thread does not wait for the timer and the
kernel runs the application as fast as possible. If the real-time application has
conditional code, the time between each execution can vary. Multirate models
cannot be executed in Freerun execution mode. On the Solver pane in the
Configuration Parameters dialog box, set Tasking mode for periodic sample
times to SingleTasking. For more information, see “Set Configuration Parameters”
and “Execution mode”.

• Interrupt mode — To use this real-time mode, on the Simulink Real-Time Options
pane in the Configuration Parameters dialog box, set Execution mode to Real-
Time.

In this mode, the scheduler implements real-time single-tasking and multitasking
execution of single-rate or multirate systems, including asynchronous events
(interrupts). This implementation allows you to interact with the target computer
while the real-time application is executing at high sample rates. For more
information, see “Interrupt Mode” on page 6-3.

• Polling mode — To use this real-time mode, on the Simulink Real-Time Options
pane in the Configuration Parameters dialog box, set Execution mode to Real-
Time. Then, set a polling rate using a TLCOptions setting.

In this mode, the kernel executes real-time applications at sample times close to the
limit of the CPU. Using polling mode with high-speed and low-latency I/O boards
and drivers allows you to achieve real-time application sample times that you cannot
achieve using the interrupt mode of the Simulink Real-Time software. Because
polling mode disables interrupts on the processor core where the model runs, it
imposes restrictions on the model architecture and on target communication. For
more information, see “Polling Mode” on page 6-5.

 Interrupt Mode

6-3

Interrupt Mode

When you set Execution mode to Real-Time on the Simulink Real-Time Options
pane in the Configuration Parameters dialog box, interrupt mode is the real-time
execution mode set by default. This mode provides the greatest flexibility. Choose this
mode for real-time applications that execute at the given base sample time without
overloading the CPU.

In interrupt mode, the scheduler implements real-time single-tasking and multitasking
execution of single-rate or multirate systems, including asynchronous events (interrupts).
Additionally, background tasks like target communication or updating the target display
run in parallel with sample-time-based model tasks. This implementation allows you
to interact with the target system while the real-time application is executing at high
sample rates. Interaction is made possible by an interrupt-driven real-time scheduler
responsible for executing the various tasks according to their priority. The base sample
time task can interrupt other tasks (larger sample time tasks or background tasks).
Execution of the interrupted tasks resumes as soon as the base sample time task
completes operation. This capability gives a quasi parallel priority execution scheme.

In interrupt mode, the kernel is close to optimal for executing code on a PC-compatible
system. However, using interrupt mode introduces a constant overhead, or latency, that
reduces the minimal possible base sample time to a constant number. The overhead
is the sum of various factors related to the interrupt-driven execution scheme. The
overhead is referred to as overall interrupt latency. Assuming that the currently
executing task is not executing a critical section and has therefore not disabled interrupt
sources, the overall latency consists of the following parts:

• Interrupt controller latency — In a PC-compatible system the interrupt controller is
not part of the x86-compatible CPU. It is part of the CPU chip set. The controller is
accessed over the I/O-port address space, which introduces a read or write latency for
each register access.

• CPU latency — Modern CPUs try to predict the next couple of instructions, including
branches, using instruction pipelines. If an interrupt occurs, the prediction fails and
the pipeline has to be fully reloaded. This process introduces additional latency.

• Interrupt handler entry and exit latency — An interrupt can stop the currently
executing task at an arbitrary instruction. When the interrupting task completes
execution, the interrupted task has to resume. Its state has to be saved and restored
accordingly. The CPU data and address registers, including the stack pointer, must be
saved. If the interrupted task executed floating-point unit (FPU) operations, the FPU
stack must also be saved. Therefore, additional latency is introduced.

6 Execution Modes

6-4

• Interrupt handler content latency — If a background task has been executing for
some time, say in a loop, its data is available in cache memory. When an interrupt
occurs and the interrupt service handler is executed, the interrupt handler data
potentially is purged from the cache. Purging the data from the cache causes the CPU
to reload the data from slower RAM. Additional latency is introduced.

The overall latency of interrupt mode is equivalent to a Simulink model containing a
hundred nontrivial blocks. Because lower priority tasks have to be serviced as well, at
least 5% of headroom is required. This requirement can cause additional cache misses
and therefore nonoptimal execution speed.

 Polling Mode

6-5

Polling Mode

Polling mode for the kernel is designed to execute real-time applications at sample times
close to the limit of the CPU. Polling mode with high-speed and low-latency I/O boards
and drivers allows you to achieve smaller sample times for real-time applications. You
cannot achieve these smaller sample times using the interrupt mode of the Simulink
Real-Time software.

Polling mode has two main uses:

• Control systems — Control system models of average model size and I/O complexity
that are executed at very small sample times (Ts = 5 to 50 µs).

• DSP systems — Sample-based DSP system models (mainly audio and speech) of
average model size and I/O complexity that are executed at very high sample rates
(Fs = 20 to 200 kHz).

Polling mode for the kernel does not have the constant latency that interrupt mode does.
The kernel does not allow interrupts, so the CPU can use this extra time for executing
model code.

Polling mode is sometimes seen as a “primitive” or “brute force” real-time execution
scheme. When a real-time application executes at a given base sample time in interrupt
mode and overloads the CPU, switching to polling mode is often the only alternative for
the application to execute at the required sample time.

Polling means that the kernel waits in an empty while loop until the time of the
next model step is reached. Then the next model step is executed. A counter must be
accessible to the kernel to get a base reference for when the next model step execution
must begin. The kernel polls this counter. If the counter must be outside the CPU, for
example in the chip set or on an ISA or PCI board, the counter value can be retrieved
only by an I/O or memory access cycle that again introduces latency. This latency
consumes the freed-up time of polling mode. Since the introduction of the Pentium CPU
family from Intel®, the CPU is equipped with a 64-bit counter on the CPU substrate
itself. This counter commences counting at CPU start time and counts up driven by the
actual clock rate of the CPU. A highly clocked CPU is unlikely to cause a 64-bit counter
to overflow. For a 1 GHz CPU:
overflow_time = 264 * 1e-9 = 584 years
The Pentium counter comes with the following features:

6 Execution Modes

6-6

• More precise measurements — Because the counter counts up with the CPU clock
rate, time measurements, even in the microsecond range, are very precise, so there
are small real-time errors.

• Overflow handler not required— Because the counter is 64 bits wide, overflow does
not occur, avoiding the CPU-time overhead of handling overflows.

• Minimal latency — The counter resides on the CPU. Reading the counter value can be
done within one CPU cycle, introducing minimal latency.

The polling execution scheme does not depend on interrupt sources to notify the code to
continue calculating the next model step. The CPU is freed up. Real-time application
code timed by the polling loop is executed as real-time code– even components, which in
interrupt mode were executed in background tasks. Do not execute background tasks in
polling mode, because these tasks are usually non-real-time tasks and can use a lot of
CPU time. To be efficient, execute only the real-time application's relevant parts. For the
Simulink Real-Time software, the relevant parts are the code segments that represent
the Simulink model itself.

Ethernet links and target display updating are disabled. Polling mode reduces the
features of the Simulink Real-Time product to a minimum. Choose this mode only as
the last alternative to reach the required base sample time for a given model. Before
considering polling mode, do the following:

• Optimize the model execution speed — First, run the model through the Simulink
profiler to find possible speed optimizations using alternative blocks. If the model
contains continuous states, discretizing these states reduces model complexity
significantly. You can avoid a costly fixed-step integration algorithm. If continuous
states cannot be discretized, use the integration algorithm with the lowest order that
still produces the required numerical results.

• Use the fastest available CPU — Use the CPU with the highest clock rate available
for a given target computer form factor. For the desktop form factor, use a CPU with
a clock rate above 3 GHz. For a model of a mobile system (e.g., PC/104 form factor),
use a CPU with a clock rate above 1 GHz. When you are running typical real-time
applications, executing slrtbench at the MATLAB prompt gives a relative measure
of CPU performance.

• Use the lowest latency I/O modules and drivers available — Many real-time
applications communicate with I/O modules over either an ISA or PCI bus. Each
register access introduces a comparably high latency time. Using the lowest latency I/
O modules and drivers available is crucial.

 Polling Mode

6-7

Set Polling Mode

Polling mode is an alternative to the default interrupt mode of the kernel. The kernel on
the bootable media created by the UI allows running the real-time application in both
modes without using another boot disk.

By default, the real-time application executes in interrupt mode. To switch to polling
mode, you must set a polling rate using a TLCOptions setting.

For a Pentium-class processor, set the polling rate to the target computer CPU clock rate.
You can find the CPU clock rate of the target computer by restarting the target computer
and checking the screen output during BIOS execution time. The BIOS usually displays
the CPU clock rate in MHz right after you start the target computer.

The following example uses xpcosc.

1 Open model xpcosc.
2 In the Configuration Parameters dialog box, on the Simulink Real-Time Options

pane, set Execution mode to Real-Time.
3 In the Command Window, type:

set_param('xpcosc','TLCOptions',

 '-axpcCPUClockPoll=CPUClockRateMHz')

For example, if your target computer is a 1.2 GHz AMD Athlon™, type:

set_param('xpcosc','TLCOptions','-axpcCPUClockPoll=1200')

4 Build and download the real-time application.

After you have downloaded the real-time application, the target display shows the
execution mode. If polling mode is activated, it displays the CPU clock rate in MHz. You
can check the setting.

If you want to execute the real-time application in interrupt mode again, either remove
the setting or assign a CPU clock rate of 0 to the setting:

set_param('xpcosc','TLCOptions','')

set_param('xpcosc','TLCOptions','-axpcCPUClockPoll=0')

6 Execution Modes

6-8

Restrictions on Single- and Multicore Processors

Polling mode runs best on a multicore processor target computer with multicore
processing enabled. For more information, see “Multicore Processor Configuration” on
page 10-11.

Polling mode disables interrupts on the core where the model is running. Background
tasks are inactive on this core, including those for the Ethernet link, target display
updating, and UDP transfers. Because the model uses only one core of a multicore target
computer, interrupts are still enabled on the other cores. Therefore, the only restriction
on a multicore computer is for multirate models. See “Multirate Models Cannot Be
Executed in Multitasking Mode” on page 6-8.

The following restrictions apply to single-core target computers:

• “Multirate Models Cannot Be Executed in Multitasking Mode” on page 6-8
• “I/O Drivers Cannot Use Kernel Timing Information” on page 6-9
• “Ethernet Link Unavailable” on page 6-9
• “Target Display Does Not Update” on page 6-10
• “Session Time Does Not Advance” on page 6-10
• “Only Data Logging Is Available” on page 6-10

Multirate Models Cannot Be Executed in Multitasking Mode

You cannot execute real-time applications in multitasking mode because of the polling
mode execution algorithm. You also cannot model function-call subsystems to handle
asynchronous events (interrupts). You can execute multirate systems in single-tasking
mode. However, because of the CPU’s scheme for sequential execution of subsystems
with different rates, the CPU can overload for the given base sample time. Consequently,
polling mode is a feasible alternative to interrupt mode only if the model has a single rate
or if it can be converted to a single-rate model.

A single-rate model implies one of the following combinations of states:

• Continuous states only
• Discrete states only
• Mixed continuous and discrete states, provided the continuous and discrete

subsystems have the same rate

 Polling Mode

6-9

Select Simulink Display > Sample Time > Colors to check for the single rate
requirement. To avoid a possible switch to multitasking mode, on the Solver pane
in the Configuration Parameters dialog box, set the Tasking Mode property to
SingleTasking.

I/O Drivers Cannot Use Kernel Timing Information

Some Simulink Real-Time drivers use timing information exported from the kernel
to, for example, detect timeouts. Because the standard timing engine of the kernel
does not run in polling mode, the required timing information is not passed back to the
drivers. Therefore, in polling mode you cannot use drivers that import the header file
time_xpcimport.h. In a future version of polling mode, drivers will use the Pentium
counter for timing.

Ethernet Link Unavailable

If you start your real-time application execution in polling mode, for example with

start(tg)

the Ethernet link is disabled throughout the entire run, until the stop time is reached.
Each attempt to issue a command like

tg

results in a communication-related error message. Even the start(tg) command
returns such an error message, because the development computer does not receive an
acknowledgment from the target before timing out. During the entire run, it is best not to
issue target-related commands on the development computer.

You cannot issue a stop(tg) command to stop the real-time application execution from
the development computer. To stop executing in polling mode, the real-time application
has to reach its set stop time. Before starting the execution, you can use

tg.StopTime = x

but once started, execution continues until the stop time is reached.

To stop the execution interactively before it reaches the real-time application stop time,
see “Control Real-Time Application on Single-Core Processor” on page 6-11.

If real-time application execution reaches the stop time and polling mode execution is
stopped, the Ethernet link begins functioning again. After polling mode execution stops,
if you still get communication error messages, type the command:

6 Execution Modes

6-10

slrtpingtarget

to reset the Ethernet link.

After the communication link is working again, type:

tg

to resynchronize the target object on the development computer with the most current
status of the real-time application.

Target Display Does Not Update

Target display updating is disabled during the entire execution of the real-time
application. The Graphics mode check box in the Target Properties pane of Simulink
Real-Time Explorer is not operational. Clear the Graphics mode check box, thereby
producing text output only.

Session Time Does Not Advance

Because interrupts are disabled during a run, the session time does not advance.
Therefore, the session time right before and after the run is the same. This same session
time does not cause an issue.

Only Data Logging Is Available

Because the Ethernet link and target display updating are disabled during the entire
run, these rapid-prototyping features are not available in polling mode:

• Parameter tuning
• Signal monitoring
• Scope objects
• Programs written using the Simulink Real-Time APIs
• The Internet browser interface
• SimulinkRealTime.target.viewTargetScreen and similar utilities

The only rapid-prototyping feature available is signal data logging. The signal data
is acquired independently of the development computer, and logged data is retrieved
only after the execution is stopped. Logging data gathers useful information about the
behavior of the real-time application. Signal logging is an important part of polling mode.

 Polling Mode

6-11

Control Real-Time Application on Single-Core Processor

When you use polling mode on a single-core processor, you cannot interact with the
running real-time application until execution reaches its predefined stop time. However,
you can use I/O drivers to implement a minimal level of interactivity.

To stop a real-time application, use a low-latency digital input driver for the digital PCI
board in your model. The driver reads in a single digital TTL signal, by default TTL low.
You change it to TTL high when the model execution must be stopped.

Connect the output port of the digital input driver block to the input port of a Stop
simulation block, found in the standard Simulink block library. The Stop block stops the
execution of the real-time application, depending on the state of the digital input signal.

To generate the TTL signal that stops the real-time application, use one of these
methods:

• Connect a physical switch to the target computer TTL input pin.
• Install another digital I/O board in the development computer and connect the TTL

output of the development computer board to the TTL input of the target computer
board. On the development computer, use the Data Acquisition Toolbox™ MATLAB
language API to drive the TTL output pin.

You can use the same setup to pass other control information back and forth at real-
time application run time. However, you must implement features other than signal
logging at the model level. You must minimize the additional latency introduced by the
feature. For example, interactively stopping the real-time application execution requires
an additional 1 µs latency to read the digital signal over the digital I/O board.

Real-Time Application Execution

7

Execution Using Graphical User
Interface Models

You can use the Simulink interface to create a custom graphical user interface (GUI) for
your real-time application. To do this, create an user interface model with the Simulink
interface and add-on products like Simulink 3D Animation™ or Altia® Design (a third-
party product).

7 Execution Using Graphical User Interface Models

7-2

Simulink Real-Time Interface Blocks to Simulink Models

In this section...

“Simulink User Interface Model” on page 7-2
“Creating a Custom Graphical Interface” on page 7-3
“To Target Block” on page 7-4
“From Target Block” on page 7-6
“Creating a Real-Time Application Model” on page 7-8
“Marking Block Parameters” on page 7-8
“Marking Block Signals” on page 7-10

Simulink User Interface Model

A user interface model is a Simulink model containing Simulink blocks from add-
on products and interface blocks from the Simulink Real-Time block library. This
user interface model can connect to a custom graphical interface using Simulink 3D
Animation or Altia products. The user interface model runs on the development computer
and communicates with your real-time application running on the target computer using
To Target and From Target blocks.

The user interface allows you to change parameters by downloading them to the target
computer, and to visualize signals by uploading data to the development computer.

Simulink 3D Animation — The Simulink 3D Animation product enables you to display
a Simulink user interface model in 3-D. It provides Simulink blocks that communicate
with Simulink Real-Time interface blocks. These blocks then communicate to a graphical
interface. This graphical interface is a Virtual Reality Modeling Language (VRML) world
displayed with a Web browser using a VRML plug-in.

Altia Design — Altia also provides Simulink blocks that communicate with Simulink
Real-Time interface blocks. These blocks then communicate with Altia's graphical
interface or with a Web browser using the Altia ProtoPlay plug-in.

 Simulink Real-Time Interface Blocks to Simulink Models

7-3

Creating a Custom Graphical Interface

The Simulink Real-Time block library provides Simulink interface blocks to connect
graphical interface elements to your real-time application. The steps for creating your
own custom user interface are listed below:

7 Execution Using Graphical User Interface Models

7-4

1 In the Simulink real-time application model, decide which block parameters and
block signals you want to have access to through graphical interface control devices
and graphical interface display devices.

2 Tag the block parameters in the Simulink model that you want to be connected to a
control device. See “Marking Block Parameters” on page 7-8.

3 Tag the signals in Simulink model that you want to be connected to a display device.
See “Marking Block Signals” on page 7-10.

4 In the MATLAB interface, run the function
SimulinkRealTime.utils.createInstrumentationModel to create the user
interface template model. This function generates a new Simulink model containing
only the Simulink Real-Time interface blocks (To Target and From Target) defined
by the tagged block parameters and block signals in the real-time application model.

5 To the user interface template model, add Simulink interface blocks from add-on
products (Simulink 3D Animation, Altia Design).

• You can connect Altia blocks to the Simulink Real-Time To PC Target interface
blocks. To Target blocks on the left should be connected to control devices.

• You can connect Altia and Simulink 3D Animation blocks to the Simulink Real-
Time From Target interface blocks. From Target blocks on the right should be
connected to the display devices.

You can position these blocks to your liking.
6 Start both the real-time application and the Simulink user interface model that

represents the application.

To Target Block

This block behaves as a sink and usually receives its input data from a control device.
The purpose of this block is to write a new value to a specific parameter in the real-time
application.

 Simulink Real-Time Interface Blocks to Simulink Models

7-5

This block is implemented as a MATLAB S-function. The block is optimized so that it
only changes a parameter on the real-time application when the input value differs from
the value that existed at the last time step. This block uses the parameter downloading
feature of the Simulink Real-Time command-line interface. This block is available from
the slrtlib/Displays and Logging block sublibrary. See To Target for further
configuration details.

7 Execution Using Graphical User Interface Models

7-6

Note: The use of To Target blocks requires a connection between the development and
target computers. Operations such as opening a model that contains these blocks or
copying these blocks within or between models will take significantly longer than normal
without a connection between the development and target computers.

From Target Block

This block behaves like a source and its output is usually connected to the input of a
display device.

 Simulink Real-Time Interface Blocks to Simulink Models

7-7

Because only one numerical value per signal is uploaded during a time step, the number
of samples of a scope object is set to 1. The block uses the capability of the Simulink Real-
Time command-line interface and is implemented as a MATLAB S-function. This block is
available from the slrtlib/Displays and Logging sublibrary. See From Target for
further configuration details.

7 Execution Using Graphical User Interface Models

7-8

Note: The use of From Target blocks requires a connection between the development
and target computers. Operations such as opening a model that contains these blocks or
copying these blocks within or between models will take significantly longer than normal
without a connection between the development and target computers.

Creating a Real-Time Application Model

A real-time application model is a Simulink model that describes your physical system,
a controller, and its behavior. You use this model to create a real-time application, and
you use this model to select the parameters and signals you want to connect to a custom
graphical interface.

Creating a real-time application model is the first step you need to do before you can tag
block parameters and block signals for creating a custom graphical interface.

See “Marking Block Parameters” on page 7-8 and “Marking Block Signals” on page
7-10 for descriptions of how to mark block properties and block signals.

Marking Block Parameters

Tagging parameters in your Simulink model allows the function
SimulinkRealTime.utils.createInstrumentationModel to create To Target
interface blocks. These interface blocks contain the parameters you connect to control
devices in your user interface model.

After you create a Simulink model, you can mark the block parameters. This procedure
uses the model xpctank as an example.

Tip The xpctank model blocks and signals may contain placeholder tags illustrating the
syntax. As you create your own copy of the model using these procedures, replace these
tags with your new tags or add the new tags using the multiple label syntax.

1 Open a Simulink model. For example, in the MATLAB Command Window, type

xpctank

2 Point to a Simulink block, and then right-click.
3 From the menu, click Properties.

 Simulink Real-Time Interface Blocks to Simulink Models

7-9

A Block Properties dialog box opens.
4 In the Description box, delete the existing tag and enter a tag to the parameters for

this block.

For example, the SetPoint block is a constant with a single parameter that selects
the level of water in the tank. Enter the tag:

xPCTag(1)=water_level;

The tag has the following syntax

xPCTag(1, . . . index_n)= label_1 . . . label_n;

For single dimension ports, the following syntax is also valid:

xPCTag=label;

index_n -- Index of a block parameter. Begin numbering parameters with an
index of 1.

label_n -- Name for a block parameter that will be connected to a To Target
block in the user interface model. Separate the labels with a space, not a comma.

label_1...label_n must consist of the same identifiers as those used by C/C++ to
name functions, variables, and so forth. Do not use names like -foo.

5 Repeat steps 1 through 3 for the remaining parameters you want to tag.

For example, for the Controller block, enter the tag:

xPCTag(1,2,3)=upper_water_level lower_water_level

 pump_flowrate;

For the PumpSwitch and ValveSwitch blocks, enter the following tags respectively:

xPCTag(2)=pump_switch;

xPCTag(1)=drain_valve;

To create the To Target blocks in an user interface model for a block with four
properties, use the following syntax:

xPCTag(1,2,3,4)=label_1label_2label_3label_4;

7 Execution Using Graphical User Interface Models

7-10

To create the To Target blocks for the second and fourth properties in a block with at
least four properties, use the following syntax:

xPCTag(2,4)=label_1 label_2;

6 From the File menu, click Save as. Enter a filename for your model. For example,
enter

xpctank1

You next task is to mark block signals if you have not already done so, and then create
the user interface template model. See “Marking Block Signals” on page 7-10 and
“Creating a Custom Graphical Interface” on page 7-3.

Marking Block Signals

Tagging signals in your Simulink model allows the function
SimulinkRealTime.utils.createInstrumentationModel to create From Target
interface blocks. These interface blocks contain the signals you connect to display devices
in your user interface model.

After you create a Simulink model, you can mark the block signals. This procedure uses
the model xpctank1 (or xpctank) as an example. See “Creating a Real-Time Application
Model” on page 7-8.

Tip The xpctank model blocks and signals may contain placeholder tags illustrating the
syntax. As you create your own copy of the model using these procedures, replace these
tags with your new tags or add the new tags using the multiple label syntax.

Note that you cannot select signals on the output ports of virtual blocks, such as
Subsystem and Mux blocks. Also, you cannot select signals on software-triggered signal
output ports.

1 Open a Simulink model. For example, in the MATLAB Command Window, type:

xpctank

or

xpctank1

 Simulink Real-Time Interface Blocks to Simulink Models

7-11

2 Point to a Simulink signal line, and then right-click.
3 From the menu, click Properties.

A Signal Properties dialog box opens.
4 Select the Documentation tab.
5 In the Description box, enter a tag to the signals for this line.

For example, the block labeled TankLevel is an integrator with a single signal that
indicates the level of water in the tank. Replace the existing tag with the tag:

xPCTag(1)=water_level;

The tag has the following format syntax:

xPCTag(1, . . . index_n)=label_1 . . . label_n;

For single dimension ports, the following syntax is also valid:

XPCTag=label:

• index_n — Index of a signal within a vector signal line. Begin numbering signals
with an index of 1.

• label_n — Name for a signal that will be connected to a From Target block in
the user interface model. Separate the labels with a space, not a comma.

label_1...label_n must consist of the same identifiers as those used by C/C++ to
name functions, variables, and so forth. Do not use names like -foo.

To create the From Target blocks in an user interface model for a signal line with
four signals (port dimension of 4), use the following syntax:

xPCTag(1,2,3,4)=label_1 label_2 label_3 label_4;

To create the From Target blocks for the second and fourth signals in a signal line
with at least four signals, use the following syntax:

xPCTag(2,4)=label_1 label_2;

Note: Only tag signals from nonvirtual blocks. Virtual blocks are only graphical
aids (see “Nonvirtual and Virtual Blocks”). For example, if your model combines
two signals into the inputs of a Mux block, do not tag the signal from the output

7 Execution Using Graphical User Interface Models

7-12

of the Mux block. Instead, tag the source signal from the output of the originating
nonvirtual block.

6 From the File menu, click Save as. Enter a filename for your model. For example,
enter

xpc_tank1

You next task is to mark block parameters if you have not already done so. See “Marking
Block Parameters” on page 7-8. If you have already marked block signals, return
to “Creating a Custom Graphical Interface” on page 7-3 for additional guidance on
creating a user interface template model.

8

Execution Using the Target Computer
Command Line

• “Control Real-Time Application at Target Computer Command Line” on page 8-2
• “Trace Signals at Target Computer Command Line” on page 8-3
• “Tune Parameters at Target Computer Command Line” on page 8-5
• “Alias Commands at Target Computer Command Line” on page 8-6
• “Find Signal and Parameter Indexes” on page 8-7

8 Execution Using the Target Computer Command Line

8-2

Control Real-Time Application at Target Computer Command Line

The Simulink Real-Time software provides a set of commands that you can use to
interact with the real-time application after it has been loaded to the target computer, to
configure and control the scopes for that application, and to tune parameters.

These commands are particularly useful with standalone real-time applications that
are not connected to the development computer. You type commands directly from a
keyboard attached to the target computer. As you start to type, a command window
appears on the target computer screen.

The target computer commands are case sensitive, but the arguments are not. For more
information, see “Target Computer Commands”

 Trace Signals at Target Computer Command Line

8-3

Trace Signals at Target Computer Command Line

After you have built and downloaded a real-time application to the target computer, you
can use target computer commands to run the application and to create and configure
scopes.

To add signals to a scope, you must specify the signals by signal number. For more
information, see “Find Signal and Parameter Indexes” on page 8-7.

1 To start the real-time application, in the command line, type:

start

2 To add a target scope (scope 2), type

addscope 2

The Simulink Real-Time software adds another scope graphic to the target computer
monitor. The command window displays a message to indicate that the new scope
has registered.

Scope 2, created, type is target

3 To add a signal (0) to the new scope, type:

addsignal 2=0

The command window displays a message to indicate that the new signal has
registered.

Scope 2, signal 0 added

You can add more signals to the scope.
4 To start scope 2, type:

startscope 2

The target scope 2 starts and displays the signals you added in the default format
(graphical).

If you add a target scope from the target computer, you must start that scope
manually. If a target scope is in the model, starting the real-time application starts
that scope automatically.

5 To collapse scope 2 into an icon, type:

8 Execution Using the Target Computer Command Line

8-4

hide Scope 2

6 To expand scope 2 from an icon, type:

show Scope 2

7 To check the value of signal 0, type:

s0

The command window displays a message to show the value of signal 0.

S0 has value 5.1851

8 To stop scope 2, type:

stopscope 2

9 To change the number of samples (to 1000) to acquire in scope 2, type:

numsamples 2=1000

You must stop the scope before changing a scope parameter.
10 To start scope 2, type:

startscope 2

The target scope 2 starts and displays the signal values with the updated sample
count.

11 To stop scope 2, type:

stopscope 2

12 To stop the real-time application, type:

stop

 Tune Parameters at Target Computer Command Line

8-5

Tune Parameters at Target Computer Command Line

After you have built and downloaded a real-time application to the target computer, you
can use target computer commands to tune parameters.

To tune parameters, you must specify them by parameter number. For more information,
see “Find Signal and Parameter Indexes” on page 8-7.

1 To check the frequency of the signal generator (parameter 6) of the model xpcosc,
type:

p6

The command window displays a message to indicate that the new parameter has
registered.

p[6] is set to 20.00000

2 To change the frequency of the signal generator, type:

setpar 6=30

The command window displays a message to indicate that the new parameter has
registered.

p[6] is set to 30.00000

The target computer command setpar does not work for vector parameters.
3 To change the stop time to 1000, type:

stoptime = 1000

The parameter changes are made to the real-time application but not to the target
object. When you type a Simulink Real-Time command in the MATLAB Command
Window, the target computer returns the current properties of the target object.

8 Execution Using the Target Computer Command Line

8-6

Alias Commands at Target Computer Command Line

You can use target computer command line variables to tag (or alias) unfamiliar
commands, parameter indexes, and signal indexes with more descriptive names.

1 To create the aliases on and off for a parameter (7) that controls a motor, type

setvar on = p7 = 1

setvar off = p7 = 0

The target computer command window is activated when you start to type, and a
command line opens.

2 Type the variable name to run that command sequence. For example, to turn the
motor on, type

on

The parameter P7 is changed to 1, and the motor turns on.

 Find Signal and Parameter Indexes

8-7

Find Signal and Parameter Indexes

To find signal and parameter indexes using MATLAB language:

1 Build and download the model to the target computer.
2 At the Command Line, type:

tg = slrt

Target: TargetPC1

 Connected = Yes

 Application = xpcosc

.

.

.

 Scopes = No Scopes defined

 NumSignals = 7

 ShowSignals = off

 NumParameters = 7

 ShowParameters = off

3 To display signal numbers, type:

tg.ShowSignals='on'

Target: TargetPC1

 Connected = Yes

 Application = xpcosc

.

.

.

 Scopes = No Scopes defined

 NumSignals = 7

 ShowSignals = on

 Signals = INDEX VALUE BLOCK NAME . . .

 0 0.000000 Gain . . .

 1 0.000000 Gain1 . . .

 2 0.000000 Gain2 . . .

 3 0.000000 Integrator . . .

 4 0.000000 Integrator1 . . .

 5 0.000000 Signal Generator . . .

 6 0.000000 Sum . . .

8 Execution Using the Target Computer Command Line

8-8

 NumParameters = 7

 ShowParameters = off

Use the Signals INDEX number in target computer commands such as addsignal.
4 To display parameter numbers, type:

tg.ShowParameters='on'

Target: TargetPC1

 Connected = Yes

 Application = xpcosc

.

.

.

 NumParameters = 7

 ShowParameters = on

 Parameters = INDEX VALUE . . . PARAMETER NAME . . .

 0 1000000 . . . Gain . . .

 1 400 . . . Gain . . .

 2 1000000 . . . Gain . . .

 3 0 . . . InitialCondition . . .

 4 0 . . . InitialCondition . . .

 5 4 . . . Amplitude . . .

 6 20 . . . Frequency . . .

Use the Parameters INDEX number in target computer commands such as setpar.

For more information about using signal and parameter numbers, see “Target Computer
Commands”.

9

Execution Using the Web Browser
Interface

9 Execution Using the Web Browser Interface

9-2

Web Browser Interface

In this section...

“Introduction” on page 9-2
“Connecting the Web Interface Through TCP/IP” on page 9-2
“Connecting the Web Interface Through RS-232 Connection” on page 9-3
“Using the Main Pane” on page 9-6
“Changing WWW Properties” on page 9-9
“Viewing Signals with a Web Browser” on page 9-9
“Viewing Parameters with a Web Browser” on page 9-10
“Changing Access Levels to the Web Browser” on page 9-10

Introduction

The Simulink Real-Time software has a Web server that allows you to interact with
your real-time application through a Web browser. You can access the Web browser with
either an Ethernet or serial (RS-232) connection.

Note: RS-232 communication type will be removed in a future release. Use TCP/IP
instead.

The Simulink Real-Time Web server is built into the kernel that allows you to interact
with your real-time application using a Web browser. If the target computer is connected
to a network, you can use a Web browser to interact with the real-time application from a
development computer connected to the network.

Connecting the Web Interface Through TCP/IP

If your development computer and target computer are connected with a network cable,
you can connect the real-time application on the target computer to a Web browser on the
development computer.

The TCP/IP stack on the Simulink Real-Time kernel supports only one simultaneous
connection, because its main objective is real-time applications. This connection is shared

 Web Browser Interface

9-3

between the MATLAB interface and the Web browser. You must close the other open
connections to the target computer before you connect using the development computer
Web browser. This also means that only one browser or the MATLAB interface is able to
connect at one time.

Before you connect your Web browser on the development computer, you must load a
real-time application onto the target computer. The real-time application does not have
to be running, but it must be loaded. Also, your browser must have JavaScript® and
StyleSheets turned on.

Note: Close the other connections to the target computer. For example, if you are
currently connected to the target computer through Simulink Real-Time Explorer,
right-click on that target computer icon and select Disconnect or click the Disconnect
icon on the toolbar.

1 In the MATLAB window, type

close(slrt)

The MATLAB interface is disconnected from the target computer, and the connection
is reset for connecting to another client. If you do not use this command immediately
before opening the Web interface, your browser might not be able to connect to the
target computer.

2 Open a Web browser. In the address box, enter the IP address and port number
you entered in the Simulink Real-Time Explorer window. For example, if the target
computer IP address is 192.168.0.10 and the port is 22222, type

http://192.168.0.10:22222/

The browser loads the Simulink Real-Time Web interface frame and panes.

Connecting the Web Interface Through RS-232 Connection

If the development computer and target computers are connected with a serial cable
instead of a network cable, you can still connect the real-time application on the target
computer to a Web browser on the development computer. The Simulink Real-Time
software includes a TCP/IP to RS-232 mapping program. This program runs on the
development computer and writes whatever it receives from the RS-232 connection to

9 Execution Using the Web Browser Interface

9-4

a TCP/IP port, and it writes whatever is receives from the TCP/IP port to the RS-232
connection. TCP/IP port numbers must be less than 216 = 65536.

Before you connect your Web browser on the development computer, you must load a
real-time application onto the target computer. The real-time application does not have
to be running, but it must be loaded. Also, your Web browser must have JavaScript and
StyleSheets turned on.

1 In the MATLAB window, type

close(slrt)

The MATLAB interface is disconnected from the target computer, leaving the target
computer ready to connect to another client. The TCP/IP stack of the Simulink
Real-Time kernel supports only one simultaneous connection. If you do not use this
command, the TCP/IP to RS-232 gateway might not be able to connect to the target
computer.

2 Open a DOS command window, and enter the command to start the TCP/IP to
RS-232 gateway. For example, if the target computer is connected to COM1 and you
would like to use the TCP/IP port 22222, type the following:

c:\<MATLAB root>\toolbox\rtw\targets\xpc\xpc\bin\xpctcp2ser

-v -t 22222 -c 1

For a description of the xpctcp2ser command, see “Syntax for the xpctcp2ser
Command” on page 9-5.

The TCP/IP to RS-232 gateway starts running, and the DOS command window
displays the message
--

* Simulink Real-Time TCP/IP to RS-232 gateway *

* Copyright 2000 The MathWorks *

--

Connecting COM to TCP port 22222

Waiting to connect

If you did not close the MATLAB to real-time application connection, xpxtcp2ser
displays the message Could not initialize COM port.

3 Open a Web browser. In the address box, enter

http://localhost:22222/

The Web browser loads the Simulink Real-Time Web interface panes.

 Web Browser Interface

9-5

4 Using the Web interface, start and stop the real-time application, add scopes, add
signals, and change parameters.

5 In the DOS command window, press Ctrl+C.

The TCP/IP to RS-232 Gateway stops running, and the DOS command window
displays the message

interrupt received, shutting down

The gateway program has a handler that responds to Ctrl+C by disconnecting
and shutting down cleanly. In this case, Ctrl+C is not used to abort the real-time
application.

6 In the MATLAB Command Window, type

slrt

The MATLAB interface reconnects to the real-time application and lists the
properties of the target object.

If you did not close the gateway program, the MATLAB window displays the
message

Error in ==>

C:\MATLABR13\toolbox\rtw\targets\xpc\xpc\@xpc\xpc.m

On line 31 ==> sync(xpcObj);

You must close the MATLAB interface and then restart it.

Syntax for the xpctcp2ser Command

The xpctcp2ser command starts the TCP/IP to RS-232 gateway. The syntax for this
command is

xpctcp2ser [-v] [-n] [-t tcpPort] [-c comPort]

xpctcp2ser -h

The options are described in the following table.

Command- Line
Option

Description

-v Verbose mode. Produces a line of output every time a client
connects or disconnects.

9 Execution Using the Web Browser Interface

9-6

Command- Line
Option

Description

-n Allows nonlocal connections. By default, only clients from the same
computer that the gateway is running on are allowed to connect.
This option allows anybody to connect to the gateway.

If you do not use this option, only the development computer that
is connected to the target computer with a serial cable can connect
to the selected port. For example, if you start the gateway on your
development computer, with the default ports, you can type in the
Web browser http://localhost:2222. However, if you try to
connect to http://Domainname.com:22222, you will probably
get a connection error.

-t tcpPort Use TCP port tcpPort. Default t is 22222. For example, to
connect to port 20010, type -t 20010.

-h Print a help message.
-c comPort Use COM port comPort (1 <= comPort <= 4). Default is 1. For

example, to use COM2, type -c 2.

Using the Main Pane

The Main pane is divided into four parts, one below the other. The four parts are
System Status, Simulink Real-Time Properties, Navigation, and WWW
Properties.

After you connect a Web browser to the target computer, you can use the Main pane to
control the real-time application:

1 In the left frame, click the Refresh button.

System status information in the top cell is uploaded from the target computer. If the
right frame is either the Signals List pane or the Screen Shot pane, updating the
left frame also updates the right frame.

2 Click the Start Execution button.

The real-time application begins running on the target computer, the Status line is
changed from Stopped to Running, and the Start Execution button text changes
to Stop Execution.

 Web Browser Interface

9-7

3 Update the execution time and average task execution time (TET). Click the
Refresh button. To stop the real-time application, click the Stop Execution button.

4 Enter new values in the StopTime and SampleTime boxes, then click the Apply
button. You can enter -1 or Inf in the StopTime box for an infinite stop time.

The new property values are downloaded to the real-time application. Note that
the SampleTime box is visible only when the real-time application is stopped.
You cannot change the sample time while a real-time application is running. (See
“Alternative Configuration and Control Methods” for limitations on changing sample
times.)

5 Select scopes to view on the target computer. From the ViewMode list, select one or
all of the scopes to view.

After entering values, the screen looks like this:

9 Execution Using the Web Browser Interface

9-8

 Web Browser Interface

9-9

Note: The ViewMode control is visible in the Simulink Real-Time Properties pane
only if you add two or more scopes to the target computer.

Changing WWW Properties

The WWW Properties cell in the left frame contains fields that control the display
on the Web interface itself, and not the real-time application. There are two fields:
maximum signal width to display and refresh interval.

1 In the Maximum Signal Width box enter -1, Inf (show all signals), 1 (show only
scalar signals), 2 (show scalar and vector signals less than or equal to 2 wide), or n
(show signals with a width less than or equal to n).

Signals with a width greater than the value you enter are not displayed on the
Signals pane.

2 In the Refresh Interval box, enter a value greater than 10. For example, enter 20.

The signal pane updates automatically every 20 seconds. Entering -1 or Inf does
not automatically refresh the pane.

Sometimes, both the frames try to update simultaneously, or the auto refresh starts
before the previous load has finished. This problem can happen with slow network
connections. In this case, increase the refresh interval or manually refresh the browser
(set the Refresh Interval = Inf).

This can also happen when you are trying to update a parameter or property at the same
time that the pane is automatically refreshing.

Sometimes, when a race condition occurs, the browser becomes confused about the
format, and you might have to refresh it. This should not happen often.

Viewing Signals with a Web Browser

The Signals pane is a list of the signals in your model.

After you connect a Web browser to the target computer you can use the Signals pane to
view signal data:

1 In the left frame, click the Signals button.

9 Execution Using the Web Browser Interface

9-10

The Signals pane is loaded in the right frame with a list of signals and the current
values.

2 On the Signals pane in the right frame, click the Refresh button.

The Signals pane is updated with the current values. Vector/matrix signals are
expanded and indexed in the same column-major format that the MATLAB interface
uses. This can be changed by the Maximum Signal Width value you enter in the
left frame.

3 In the left frame, click the Screen Shot button.

The Screen Shot pane is loaded and a copy of the current target computer screen is
displayed. The screen shot uses the portable network graphics (PNG) file format.

Viewing Parameters with a Web Browser

The Parameters pane displays the tunable parameters in your model. Row and column
indices for vector/matrix parameters are also shown.

After you connect a Web browser to the target computer, you can use the Parameters
pane to change parameters in your real-time application while it is running in real time:

1 In the left frame, click the Parameters button.

The Parameter List pane is loaded into the right frame.

If the parameter is a scalar parameter, the current parameter value is shown in a
box that you can edit.

If the parameter is a vector or matrix, click the Edit button to view the vector or
matrix. You can edit the parameter in this pane.

2 In the Value box, enter a new parameter value, and then click the Apply button.

Changing Access Levels to the Web Browser

The Web browser interface allows you to set access levels to the real-time application.
The different levels limit access to the real-time application. The highest level, 0, is the
default level and allows full access. The lowest level, 4, only allows signal monitoring and
tracing with your real-time application.

 Web Browser Interface

9-11

1 In the Simulink window, click Simulation > Model Configuration Parameters.

The Configuration Parameters dialog box for the model is displayed.
2 Click the Code Generation node.

The code generation pane opens.
3 In the Target selection section, access levels are set in the System target file box.

For example, to set the access level to 1, enter

slrt.tlc -axpcWWWAccessLevel=1

If you do not specify -axpcWWWAccessLevel, the highest access level (0) is set.
4 Click OK.

The various fields disappear, depending on the access level. For example, if your
access level does not allow you access to the parameters, you do not see the button for
parameters.

There are various access levels for monitoring, which allow different levels of hiding.
The proposed setup is described below. Each level builds on the previous one, so only the
incremental hiding of each successive level is described.

Level 0 — Full access to the panes and functions.

Level 1 — Cannot change the sample and stop times. Cannot change parameters, but
can view parameters.

Level 2 — Cannot start and stop execution of the real-time application or log data.

Level 3 — Cannot view parameters. Cannot add new scopes, but can edit existing
scopes.

Level 4 — Cannot edit existing scopes on the Scopes pane. Cannot add or remove
signals on the Scopes pane. Cannot view the Signals pane and the Parameters pane,
and cannot get scope data.

10

Tuning Performance

• “Improve Performance of Multirate Model” on page 10-2
• “Multicore Processor Configuration” on page 10-11
• “Maximizing Target Computer CPU Usage” on page 10-13
• “Execution Profiling for Real-Time Applications” on page 10-15
• “Configure Real-Time Application for Profiling” on page 10-16
• “Generate Real-Time Application Execution Profile” on page 10-19
• “Building Referenced Models in Parallel” on page 10-24

10 Tuning Performance

10-2

Improve Performance of Multirate Model

In this section...

“Generate Baseline” on page 10-2
“Perform Real-Time Checks” on page 10-5
“Final Validation” on page 10-8

Required Products: Simulink, Simulink Real-Time

Other Requirements:

• One Windows development computer with an Ethernet card
• One target computer
• One crossover cable for communication between the development and target

computers

Performance Advisor detects blocks and parameter settings that can reduce performance.
It determines the lower limit on sample time that does not produce a CPU overload.

This example uses model ex_slrt_perfadv.

The example model is stored in the documentation examples folder. To access the model,
type:

addpath(fullfile(matlabroot,'help','toolbox','xpc',...

 'examples'));

In ex_slrt_perfadv, the configuration parameter Fixed-step size (fundamental
sample time) is set to auto. The sample time is set in the referenced subsystems using
a MATLAB variable, Ts. You can change the base sample time by changing the value of
Ts.

Generate Baseline

Before you optimize your model using Performance Advisor, generate a baseline.

1 Open ex_slrt_perfadv.
2 From the Analysis menu, click Performance Tools > Performance Advisor.
3 Set Activity to Execute real-time application.

 Improve Performance of Multirate Model

10-3

4 Under node Performance Advisor, select all of the Baseline checks except
Determine minimum sample time.

Determining the minimum sample time can be a lengthy process for a large model
with a long execution time.

5 Select node Baseline, and then click Run selected checks.

For this model, the Real-Time Performance Baseline action fails because running
the real-time application produced a CPU overload on the target computer.

6 To remove this condition, increase the sample time to a value greater than the
minimum value that does not cause a CPU overload. To find the minimum sample

10 Tuning Performance

10-4

time, select the Determine minimum sample time check box, and then click Run
this check.

To avoid the overloads that random variations can cause, set Ts to a value above the
lower limit. For example, set it to 0.003 s.

7 In the Command Window, type:

Ts = 0.003

8 Save ex_slrt_perfadv and its reference subsystems.
9 Clear the Determine minimum sample time check box, select the Real-Time

Performance Baseline check box, and then click Run this check.

 Improve Performance of Multirate Model

10-5

Perform Real-Time Checks

To perform the real-time performance checks, first create a baseline (see “Generate
Baseline” on page 10-2). Then carry out the following steps using Performance
Advisor.

1 Under node Performance Advisor, select all of the top-level Real-Time checks.

10 Tuning Performance

10-6

If you have a license for Simscape™ or its related products, such as SimDriveline™
and SimElectronics®, clear those checks. There are no Simscape or related blocks in
the model.

2 Select the Real-Time node, and then click Run selected checks.

The model is a multirate model running on a multicore target computer, but it is not
configured to use more than one core.

 Improve Performance of Multirate Model

10-7

3 In the Solver pane under Additional options, select the check box Allow tasks
to execute concurrently on target. Select the same setting for the reference
subsystems ex_slrt_perfadv_ref1 and ex_slrt_perfadv_ref2.

4 Save ex_slrt_perfadv and its reference subsystems.
5 Select the Concurrent execution check box, and then click Run this check.

6 To improve the minimum sample time, select the Determine minimum sample
time check box, and then click Run this check.

10 Tuning Performance

10-8

The result shows a sample time less than 0.0003 s. To avoid the overloads that
random variations can cause, set Ts to a value above the lower limit. For example,
set it to 0.001 s.

7 In the Command Window, type:

Ts = 0.001

8 Save ex_slrt_perfadv and its reference subsystems.

Final Validation

The final validation check tests whether the model works after the actions in “Generate
Baseline” on page 10-2 and “Perform Real-Time Checks” on page 10-5.

1 Select the Final validation check box, and then click Run this check.

 Improve Performance of Multirate Model

10-9

2 To improve the sample time further, run profile_xpc and examine the task
execution and function execution times in detail.

See Also
profile_xpc

10 Tuning Performance

10-10

Related Examples
• “Execution Profiling for Real-Time Applications” on page 10-15
• “Multicore Processor Configuration” on page 10-11
• “Maximizing Target Computer CPU Usage” on page 10-13

More About
• “Multicore Programming with Simulink”
• “BIOS Settings”
• “Multicore Processors”

 Multicore Processor Configuration

10-11

Multicore Processor Configuration

For better performance on your target computer, you can run multirate real-time
applications on multiple cores. Use this capability if your target computer has a
multicore processor and you want to take advantage of it for multirate models. Before
you consider enabling this capability, see “BIOS Settings” for the effects of BIOS settings.

To build and download multirate models on your multicore target computer:

1 Type slrtexplr in the MATLAB Command Window.
2 In the Targets pane, expand the target computer node.
3 Click the Target Properties icon in the toolbar or double-click Properties.
4 Select the Multicore CPU check box in the Target settings pane.
5 Open your model in Simulink Editor.
6 Add a Rate Transition block to transition between rates.

Note: Multirate models must use Rate Transition blocks. If your model uses other
blocks for rate transitions, building the model generates an error.

7 Select the Ensure data integrity during data transfer check box of the Rate
Transition block parameters.

8 Clear the Ensure deterministic data transfer (maximum delay) check box of
the Rate Transition block parameters. This setting forces the Rate Transition block
to use the most recent data available.

Note: Because this box is cleared, the transferred data can differ from run to run.
9 In Simulink Editor, select View > Model Explorer.
10 In Simulink Model Explorer, right click in the Model Hierarchy pane and select

Configuration > Add configuration for concurrent execution
11 In the new configuration, select Solver.
12 Check Enable concurrent tasking.
13 Click Configure Tasks.

See Also
Rate Transition

10 Tuning Performance

10-12

More About
• “Multicore Programming with Simulink”

 Maximizing Target Computer CPU Usage

10-13

Maximizing Target Computer CPU Usage

Sometimes a real-time application running on the target computer does not have enough
time to complete processing before the next time step. This condition is called a CPU
overload. Typically, the Simulink Real-Time kernel halts model execution when it
encounters a CPU overload.

Some real-time applications can tolerate several CPU overloads without significant loss
of data, for example during startup. For such applications, you can maximize target
computer CPU usage by allowing a specified number and configuration of CPU overloads.
You do this using the TLCOptions settings xPCMaxOverloads, xPCMaxOverloadLen,
and xPCStartupFlag.

If your real-time application experiences a CPU overload after execution starts, the
kernel ignores timer interrupts if the task is already running. The application continues
running, subject to the values of xPCMaxOverloads and xPCMaxOverloadLen. If the
kernel allows, the application then executes at the next step.

Consider the following cases:

• xPCMaxOverloads is 2. The software tolerates the first two overloads and stops
execution at the third.

• xPCMaxOverloads is 3 and xPCMaxOverloadLen is 2. The software tolerates the
first three overloads and halts the model at the fourth.

10 Tuning Performance

10-14

• xPCStartupFlag is 4. The kernel ignores overloads for the first four executions.

The three properties interact. When the Simulink Real-Time kernel runs the model,
it checks the number of CPU overloads against the values of xPCMaxOverloads and
xPCMaxOverloadLen. When the number of CPU overloads reaches the lower of these
two values, the kernel stops executing the model.

Suppose that you enter the following TLCOptions settings for model xpcosc.

set_param('xpcosc','TLCOptions','-axPCMaxOverloads=30

 -axPCOverLoadLen=2 -axPCStartupFlag=5')

The software ignores CPU overloads for the first five iterations through the model. After
the first five iterations, the software allows up to 30 CPU overloads, allowing at most two
consecutive CPU overloads.

You can use the blocks Set Overload Counter and Get Overload Counter to set and track
CPU overload numbers. You can use the Time Stamp Counter block to profile your model

See Also
Get Overload Counter | Set Overload Counter | Time Stamp Counter |
TLCOptions Properties

 Execution Profiling for Real-Time Applications

10-15

Execution Profiling for Real-Time Applications

You can profile the task execution time and function execution time of your real-time
application running on the target computer. Using that information, you can then tune
its performance.

Profiling is especially useful if the real-time application is configured to take advantage
of multicore processors on the target computer. To profile the real-time application:

1 In the Configuration Parameters for the model, enable the collection of profile data
during execution.

2 Build, download, and execute the model.
3 Display and evaluate the profile data.

Profiling slightly increases the execution time of the real-time application.

Related Examples
• “Configure Real-Time Application for Profiling” on page 10-16
• “Generate Real-Time Application Execution Profile” on page 10-19
• “Multicore Processor Configuration” on page 10-11

10 Tuning Performance

10-16

Configure Real-Time Application for Profiling

This example shows how to configure model dxpcmds6t for task execution profiling.

1 Open model dxpcmds6t.
2 In the top model, open the Configuration Parameters dialog box, and select Code

Generation > Verification.
3 Select the Measure task execution time check box.
4 If you also want to profile function execution times, select the Measure function

execution times check box.

5 Under Code Generation, select Simulink Real-Time Options.
6 Type a value for Number of profiling events (each uses 20 bytes).

By default, the software logs 5000 events for profiling. You can increase or decrease
this number to manage memory usage. When the software logs the specified number
of events or the model stops, the software stops collecting the data. The software
writes the data to current_working_folder\xPCTrace.csv on the target
computer.

 Configure Real-Time Application for Profiling

10-17

7 Click OK.
8 Save model dxpcmds6t.

10 Tuning Performance

10-18

See Also
profile_xpc

 Generate Real-Time Application Execution Profile

10-19

Generate Real-Time Application Execution Profile

This example shows how to generate profile data for model dxpcmds6t using default
settings on a multicore target computer.

This procedure assumes that you have configured the target computer to take advantage
of multiple cores. It also assumes that you previously configured the model for task
execution profiling.

Build and download the model.

mdl = 'dxpcmds6t';

open_system(mdl)

rtwbuild(mdl)

When you include profiling, the Code Generation Report is generated by default. It
contains links to the generated C code and include files. By clicking these links, you can
examine the generated code and understand the Code Execution Profile Report better.

10 Tuning Performance

10-20

Execute the real-time application.

tg = slrt;

start(tg)

pause(2)

stop(tg)

Profile the real-time application execution.

profileInfo.modelname = 'dxpcmds6t.mdl';

profData = profile_xpc(profileInfo);

The Execution Profile plot shows the allocation of execution cycles across the four
processors, indicated by the colored horizontal bars.

 Generate Real-Time Application Execution Profile

10-21

The Code Execution Profiling Report displays model execution profile results for each
task.

10 Tuning Performance

10-22

Profile Data Description

Maximum turnaround
time

Longest time between when the task starts and finishes. This
time includes task preemptions (interrupts).

Average turnaround time Average time between when the task starts and finishes.
This time includes task preemptions (interrupts).

Maximum execution time Longest time between when the task starts and finishes. This
time does not include task preemptions (interrupts).

Average execution time Average time between when the task starts and finishes.
This time does not include task preemptions (interrupts).

Calls Number of times the generated code section is called.

 Generate Real-Time Application Execution Profile

10-23

To display the profile data for the generated code section, click the Membrane icon in
the Coder Execution Profiling Report.

Close the model.

close_system(mdl,0)

See Also
profile_xpc

Related Examples
• “Multicore Processor Configuration” on page 10-11
• “Configure Real-Time Application for Profiling” on page 10-16

10 Tuning Performance

10-24

Building Referenced Models in Parallel

The Simulink Real-Time software allows you to build referenced models in parallel
on a compute cluster. In this way, you can more quickly build and download real-time
applications to the target computer.

The following procedure assumes that you have a functioning Simulink Real-Time
installation on your development computer.

1 Identify a set of worker computers, which can be separate cores on your development
computer or computers in a remote cluster running under Windows.

2 If you intend to use separate cores on the development computer, install Parallel
Computing Toolbox™ on the development computer.

3 If you intend to use computers in a remote cluster:

a Install the following on each cluster computer:

• MATLAB
• Parallel Computing Toolbox
• MATLAB Distributed Computing Server™
• Simulink Real-Time
• Build compiler

Install the same compiler and compiler version at the same location as on the
development computer.

b Start and configure the remote cluster according to the instructions at http://
www.mathworks.com/support/product/DM/installation/ver_current/.

4 Run MATLAB on the development computer.
5 In MATLAB, call the parpool function to open a parallel pool on the cluster.
6 To configure the compiler for the remote workers as a group, call the pctRunOnAll

function. For example:
pctRunOnAll('slrtsetCC(''VisualC'',

 ''C:\Program Files\Microsoft Visual Studio 9.0'')')

In this configuration, the development computer and the remote workers have
installed Microsoft Visual Studio® 9.0 at C:\Program Files\Microsoft Visual
Studio 9.0.

http://www.mathworks.se/support/product/DM/installation/ver_current/
http://www.mathworks.se/support/product/DM/installation/ver_current/

 Building Referenced Models in Parallel

10-25

7 Build and download your model.

See Also
parpool | pctRunOnAll

More About
• “Reduce Build Time for Referenced Models”

Execution Using MATLAB Scripts

11

Real-Time Applications and Scopes in
the MATLAB Interface

• “MATLAB Language Interface” on page 11-2
• “Real-Time Application Objects” on page 11-3
• “Create Real-Time Application Objects” on page 11-4
• “Display Application Object Properties” on page 11-5
• “Set Real-Time Application Object Property Values” on page 11-6
• “Get Real-Time Application Object Property Values” on page 11-7
• “Use Real-Time Application Object Functions” on page 11-8
• “Real-Time Scope Objects” on page 11-9
• “Display Scope Object Properties for One Scope” on page 11-11
• “Display Scope Object Properties for Multiple Scopes” on page 11-12
• “Set Scope Property Values” on page 11-13
• “Get Scope Property Values” on page 11-14
• “Use Scope Object Functions” on page 11-16
• “Acquire Signal Data with File Scopes” on page 11-17
• “Acquire Signal Data into Dynamically Named Files” on page 11-18
• “Scope Trigger Configuration” on page 11-20
• “Pre- and Post-Triggering of Scopes” on page 11-21
• “Trigger One Scope with Another Scope” on page 11-23
• “Acquire Gap-Free Data Using Two Scopes” on page 11-30

11 Real-Time Applications and Scopes in the MATLAB Interface

11-2

MATLAB Language Interface

An important part of the “Rapid Control Prototyping Process” and “Hardware-in-the-
Loop Simulation Process” workflows is preparing stress test and regression test scripts.
The Simulink Real-Time product includes specialized MATLAB classes and functions for
setting up the target environment, booting the target computer, loading and running the
real-time application, and displaying and recording the results. You do these tasks using
the MATLAB language interface.

 Real-Time Application Objects

11-3

Real-Time Application Objects

The Simulink Real-Time software uses a SimulinkRealTime.target object to
represent the target kernel and your real-time application. Use real-time application
object functions to run and control real-time applications on the target computer with
scope objects to collect signal data.

An understanding of the real-time application object properties and functions helps you
to control and test your real-time application on the target computer.

A real-time application object on the development computer represents the interface
to a real-time application and the kernel on the target computer. You use real-time
application objects to run and control the real-time application.

When you change a real-time application object property on the development computer,
information is exchanged with the target computer and the real-time application.

To create a real-time application object:

1 Build a real-time application. The Simulink Real-Time software creates a real-time
application object during the build process.

2 Use the real-time application object function SimulinkRealTime.target. In the
MATLAB Command window, type tg = SimulinkRealTime.target.

A SimulinkRealTime.target object has properties and functions specific to that
object. The real-time application object functions allow you to control a real-time
application on the target computer from the development computer. You enter real-
time application object functions in the MATLAB window on the development computer,
or you can use MATLAB code scripts. To access the help for these functions from the
command line, use the syntax:

doc SimulinkRealTime.target/function_name

If you want to control the real-time application from the target computer, use target
computer commands (see “Control Real-Time Application at Target Computer Command
Line” on page 8-2).

11 Real-Time Applications and Scopes in the MATLAB Interface

11-4

Create Real-Time Application Objects

To create a real-time application object:

1 Build a real-time application. The Simulink Real-Time software creates a real-time
application object during the build process.

2 To create a specific real-time application object, or to create multiple real-time
application objects in your system, use the real-time application object function
SimulinkRealTime.target with arguments. For example, to create a real-time
application object for target TargetPC1, in the MATLAB Command Window, type:

tg = SimulinkRealTime.target('TargetPC1')

The resulting real-time application object is tg.

Using this function clarifies which application object is associated with a particular
target computer.

3 To check a connection between development and target computers, use the target
function SimulinkRealTime.target.ping. For example, type:

ping(tg)

4 To create a real-time application object for the default target computer, use the
creation function SimulinkRealTime.target without arguments. For example, in
the MATLAB Command Window, type:

tg = SimulinkRealTime.target

The resulting real-time application object is tg.

Note: If you use SimulinkRealTime.target without arguments to create a real-time
application object, use Simulink Real-Time Explorer to configure your target computer.
Doing so clarifies which real-time application object is associated with a particular target
computer.

 Display Application Object Properties

11-5

Display Application Object Properties

You might want to list the real-time application object properties to monitor a real-time
application. The properties include the execution time and the average task execution
time.

After you build a real-time application and real-time application object from a Simulink
model, you can list the real-time application object properties. This procedure uses the
default real-time application object name tg as an example.

1 In the MATLAB window, type:

tg = slrt;

The current real-time application properties are uploaded to the development
computer. MATLAB displays a list of the real-time application object properties with
the updated values.

The real-time application object properties for TimeLog, StateLog, OutputLog, and
TETLog are not updated at this time.

2 Type:

start(tg)

The Status property changes from stopped to running. The log properties change
to Acquiring.

For a list of real-time application object properties with a description, see
SimulinkRealTime.target.

11 Real-Time Applications and Scopes in the MATLAB Interface

11-6

Set Real-Time Application Object Property Values

You can change a real-time application object property by using the Simulink Real-Time
dot notation on the development computer. (For limitations on target property changes to
sample times, see “Alternative Configuration and Control Methods”.)

With the Simulink Real-Time software, you can use object property syntax to change the
real-time application object properties.

target_object.property_name = new_property_value

For example, to change the stop time for the real-time application running on target tg,
in the MATLAB window, type:

tg = slrt;

tg.StopTime = 1000

When you change a real-time application object property, the new property value is
downloaded to the target computer. The Simulink Real-Time kernel then receives the
information and changes the behavior of the real-time application.

To get a list of the writable properties, type target_object. The build process assigns
the default name of the real-time application object to tg.

 Get Real-Time Application Object Property Values

11-7

Get Real-Time Application Object Property Values

You can list a property value in the MATLAB window or assign that value to a MATLAB
variable. With the Simulink Real-Time software, you can use object property syntax.

target_object.property_name

For example, to access the stop time for the real-time application running on target tg,
in the MATLAB window, type:

tg = slrt;

endrun = tg.StopTime

To get a list of readable properties, type target_object. Without assignment to a
variable, the property values are listed in the MATLAB window.

Signals are not real-time application object properties. To get the value of the
Integrator1 signal from the model xpcosc, in the MATLAB window, type:

outputvalue = getsignal(tg, 0)

0 is the signal index.

Note: Function names are case sensitive. You must type the entire name. Property
names are not case sensitive. You do not need to type the entire name, as long as the
characters you do type are unique for the property.

11 Real-Time Applications and Scopes in the MATLAB Interface

11-8

Use Real-Time Application Object Functions

Use the function_name(target_object, argument_list) syntax to run a real-
time application object function.

Unlike properties, for which partial but unambiguous names are permitted, you must
enter function names in full, in lowercase. For example, to add a target scope with a
scope index of 1, in the MATLAB window, type:

tg = slrt;

addscope(tg,'target',1)

 Real-Time Scope Objects

11-9

Real-Time Scope Objects

The Simulink Real-Time software uses scope objects to represent scopes on the target
computer. Use scope object functions to view and collect signal data.

The Simulink Real-Time software uses scopes and scope objects as an alternative to
using Simulink scopes and external mode. A scope can exist as part of a Simulink model
system or outside a model system.

• A scope that is part of a Simulink model system is a scope block. You add a Simulink
Real-Time scope block to the model, build a real-time application from that model,
and download that application to the target computer.

• A scope that is outside a model is not a scope block. For example, if you create a scope
with the SimulinkRealTime.target.addscope function, that scope is not defined
within the model. After the model has been downloaded and initialized, you add this
scope to the model.

This difference affects when and how the scope executes to acquire data.

Scope blocks inherit sample times. A scope block in the root model or a normal subsystem
executes at the sample time of its input signals. A scope block in a conditionally executed
(triggered/enabled) subsystem executes whenever the containing subsystem executes. In
the latter case, the scope might acquire samples at irregular intervals.

A scope that is not part of a model executes at the base sample time of the model.
Therefore, it might acquire repeated samples. For example, if the model base sample
time is 0.001, and you add to the scope a signal whose sample time is 0.005, the scope
acquires five identical samples for this signal, and then the next five identical samples,
and so on.

Understanding the structure of scope objects helps you to use the MATLAB command-
line interface to view and collect signal data. A scope object on the development computer
represents a scope on the target computer. You use scope objects to observe the signals
from your real-time application during a real-time run or analyze the data after the run
is finished.

To create a scope object:

• Add a Simulink Real-Time scope block to your Simulink model, build the
model to create a scope, and then use the real-time application object function
SimulinkRealTime.target.getscope to create a scope object.

11 Real-Time Applications and Scopes in the MATLAB Interface

11-10

• Use the real-time application object function
SimulinkRealTime.target.addscope to create a scope, create a scope object, and
assign the scope properties to the scope object.

Upon creation, the Simulink Real-Time software assigns the required scope object class
for the scope type:

• Target scopes — SimulinkRealTime.targetScope, created by calling
SimulinkRealTime.target.getscope with scope type target.

• Host scopes — SimulinkRealTime.hostScope, created by calling
SimulinkRealTime.target.getscope with scope type host.

• File scopes – SimulinkRealTime.fileScope, created by calling
SimulinkRealTime.target.getscope with scope type file.

A scope object has associated properties and functions specific to that scope type, as
well as properties and functions held in common with the other scopes. The scope object
functions allow you to control scopes on your target computer.

If you want to control the real-time application from the target computer, use target
computer commands (see “Control Real-Time Application at Target Computer Command
Line” on page 8-2).

 Display Scope Object Properties for One Scope

11-11

Display Scope Object Properties for One Scope

To list the properties of a single scope object, sc1, in the MATLAB window, type:

tg = slrt;

sc1 = getscope(tg,1)

MATLAB creates the scope object sc1 from a previously created scope.

The current scope properties are uploaded to the development computer. MATLAB
displays a list of the scope object properties with the updated values. Because sc1 is a
vector with a single element, you could also type sc1(1) or sc1([1]).

Note: Only scopes of type host store data in the properties scope_object.Time and
scope_object.Data.

For a list of real-time application object properties with a description, see the target
function SimulinkRealTime.target.

11 Real-Time Applications and Scopes in the MATLAB Interface

11-12

Display Scope Object Properties for Multiple Scopes

To list the properties of the current scope objects associated with the real-time
application object tg, in the MATLAB window, type:

tg = slrt;

getscope(tg)

SimulinkRealTime.target.getscope supports vector arguments. For example, to
list the first and third scopes, type:

getscope(tg,[1,3])

To assign a list of current scopes to a variable, type:

allscopes = getscope(tg)

For a list of real-time application object properties, see the target function
SimulinkRealTime.target.

 Set Scope Property Values

11-13

Set Scope Property Values

With the Simulink Real-Time software, you can use object property syntax to set a single
scope object property.

scope_object.property_name = new_property_value

For example, to change the trigger mode for scope 1, in the MATLAB window, type:

tg = slrt;

sc1 = getscope(tg, 1);

sc1.triggermode = 'signal'

You cannot use dot notation to set vector object properties. To assign a property value to
a vector of scopes, use the set function. For example, assume you have two scopes, 1 and
2. First assign a vector containing these scopes to the variable sc12:

sc12 = getscope(tg, [1,2]);

To set the NumSamples property of these scopes to 300, type:

set(sc12, 'NumSamples', 300);

To get a list of the writable properties, type scope_object.

Note:

• You cannot set a property of a vector of scopes to a vector of property values. For
example, you cannot set property NumSamples of vector sc12 to [100,200].

• Function names are case sensitive. You must type the entire name. Property names
are not case sensitive. You do not need to type the entire name as long as the
characters you do type are unique for the property.

11 Real-Time Applications and Scopes in the MATLAB Interface

11-14

Get Scope Property Values

You can list a property value in the MATLAB window or assign that value to a MATLAB
variable. With the Simulink Real-Time software, you can use object property syntax to
get scope property values.

scope_object_vector(index_vector).property_name

For example, to get the number of samples from scope 1, in the MATLAB window, type:

tg = slrt;

sc1 = getscope(tg, 1);

sc1.NumSamples

To get the values of vector object properties set using the set function, you can use the
corresponding get function. For example, assume you have two scopes, 1 and 2, with a
NumSamples property of 300.

First assign a vector containing these scopes to the variable sc12.

sc12 = getscope(tg, [1,2]);

To get the value of NumSamples for these scopes, type:

get(sc12, 'NumSamples')

You get a result like:

ans =

 [300]

 [300]

Although you cannot use dot notation to set the values of vector object properties, you can
use it to get those values:

sc12.NumSamples

You get a result like:

ans =

 300

ans =

 300

 Get Scope Property Values

11-15

To get a list of readable properties, type scope_object. The property values are listed
in the MATLAB window.

Note: Function names are case sensitive. You must type the entire name. Property
names are not case sensitive. You do not need to type the entire name as long as the
characters you do type are unique for the property.

11 Real-Time Applications and Scopes in the MATLAB Interface

11-16

Use Scope Object Functions

Use the function syntax to run a scope object functions:

function_name(scope_object, argument_list)

Unlike properties, for which partial but unambiguous names are permitted, enter
function names in full, in lowercase. For example, to add signals to the first scope in a
vector of all scopes, in the MATLAB window, type:

allscopes = getscope(tg)

addsignal(allscopes(1), [0,1])

 Acquire Signal Data with File Scopes

11-17

Acquire Signal Data with File Scopes

You can acquire signal data into a file on the target computer. To do so, you can include a
real-time file scope in your Simulink Real-Time model. Alternatively, after you build the
real-time application and download it to the target computer, you can add a file scope to
that application.

For example, to add a file scope named sc to the real-time application, and to add signal
4 to that scope:

1 In the MATLAB window, type:

tg = slrt;

sc = addscope(tg, 'file')

The Simulink Real-Time software creates a file scope for the real-time application.
2 To add signal 4, type:

addsignal(sc, 4)

3 Caution The software overwrites previously acquired data in files of the specified
name or name pattern when the file scope starts. Copy previously acquired data to
the development computer before starting the scope, otherwise it is lost.

To start the scope, type:

start(sc)

4 To start the real-time application, type:

start(tg)

The Simulink Real-Time software adds signal 4 to the file scope. When you start the
scope and the real-time application, the scope saves the signal data for signal 4 to a file,
by default named C:\data.dat.

• For more information on file scopes, see “Configure Real-Time File Scope Blocks” on
page 5-68.

• To retrieve the file programmatically from the target computer for analysis, see
“Using SimulinkRealTime.fileSystem Objects” on page 12-4.

• To acquire signal data into multiple files, see “Acquire Signal Data into Dynamically
Named Files” on page 11-18.

11 Real-Time Applications and Scopes in the MATLAB Interface

11-18

Acquire Signal Data into Dynamically Named Files

You can acquire signal data into multiple, dynamically named files on the target
computer. For example, you can acquire data into multiple files to examine one file while
the scope continues to acquire data into other files.

To acquire data into multiple files, you can include a real-time file scope in your Simulink
Real-Time model. Alternatively, after you build a real-time application and download
it to the target computer, you can add a file scope to that application. You can then
configure that scope to log signal data to multiple files.

For example, configure a file scope named sc to the real-time application. The file scope
has these characteristics:

• Logs signal data into up to nine files whose sizes do not exceed 4096 bytes.
• Creates files whose names contain the string file_.dat.
• Contains signal 4.

1 In the MATLAB window, type:

tg = slrt;

tg.StopTime = Inf;

This parameter value directs the real-time application to run indefinitely.
2 To add a file scope, type:

sc = addscope(tg, 'file');

3 To enable the file scope to create multiple log files, type:

sc.DynamicFileName = 'on';

Enable this setting to enable logging to multiple files.
4 To enable file scopes to collect data up to the number of samples, and then start over

again, type:

sc.AutoRestart = 'on';

Use this setting for the creation of multiple log files.
5 To limit each log file size to 4096, type:

sc.MaxWriteFileSize = 4096;

 Acquire Signal Data into Dynamically Named Files

11-19

You must use this property. Set MaxWriteFileSize to a multiple of the WriteSize
property.

6 To enable the file scope to create multiple log files with the same name pattern, type:

sc.Filename = 'file_<%>.dat';

This sequence directs the software to create up to nine log files, file_1.dat to
file_9.dat on the target computer file system.

7 To add signal 4 to the file scope, type:

addsignal(sc, 4);

8 Caution The software overwrites previously acquired data in files of the specified
name or name pattern when the file scope starts. Copy previously acquired data to
the development computer before starting the scope, otherwise it is lost.

To start the scope, type

start(sc)

9 To start the real-time application, type

start(tg)

The software creates a log file named file_1.dat and writes data to that file. When
the size of file_1.dat reaches 4096 bytes (value of MaxWriteFileSize), the software
closes the file and creates file_2.dat. When its size reaches 4096 bytes, the software
closes it and creates file_3.dat, and so on.

The software repeats this sequence until it fills the last log file, file_9.dat. If the
real-time application continues to run and collect data after file_9.dat, the software
reopens file_1.dat and overwrites the existing contents. It cycles through the other log
files sequentially.

• For more information on file scopes, see “Configure Real-Time File Scope Blocks” on
page 5-68.

• To retrieve the file programmatically from the target computer for analysis, see
“Using SimulinkRealTime.fileSystem Objects” on page 12-4.

• To acquire signal data into a single file, see “Acquire Signal Data with File Scopes” on
page 11-17.

11 Real-Time Applications and Scopes in the MATLAB Interface

11-20

Scope Trigger Configuration

You can configure Simulink Real-Time scopes to acquire data right away, or define
triggers for scopes so that the Simulink Real-Time scopes wait until they are triggered to
acquire data. You can configure Simulink Real-Time scopes to start acquiring data when
a predefined trigger condition is met. The exact condition depends on the trigger mode
that you select.

• Freerun — Acquires data as soon as the scope is started (default).
• Software — Acquires data in response to a user request, such as a call to

one of the Scope functions (SimulinkRealTime.fileScope.trigger,
SimulinkRealTime.hostScope.trigger, and
SimulinkRealTime.targetScope.trigger) or a call to a C or .NET API function
(xPCScSoftwareTrigger, xPCScope.Trigger).

• Signal — Acquires data when a particular signal has crossed a preset level.
• Scope — Acquires data when another (triggering) scope starts.

You can use several properties to further refine when a scope starts to acquire data. For
example, if you want the scope to be triggered when another signal crosses a certain
value, use Signal trigger mode. Specify:

• The signal to trigger the scope.
• The trigger level that the signal must cross to trigger the scope to start acquiring

data.
• Whether the scope is triggered on a rising signal, falling signal, or either one.

The trigger point is the sample at which the scope trigger condition is satisfied. For
signal triggering, the trigger point is the sample at which the trigger signal passes
through the trigger level. At the trigger point, the scope acquires the first sample. By
default, scopes start acquiring data from the trigger point onwards. You can modify this
behavior using pre- and post-triggering with the NumPrePostSamples scope property.
See “Pre- and Post-Triggering of Scopes” on page 11-21.

 Pre- and Post-Triggering of Scopes

11-21

Pre- and Post-Triggering of Scopes

By default, the scope starts acquiring data at the same time as the trigger event (the
trigger point). In some cases, you want to observe the sequence of values that led to the
trigger, so you start acquiring data a given number of samples before the trigger event
(pre-triggering). In other cases, you want to observe the system settling down after the
trigger event, so you delay acquiring data a given number of samples after the trigger
event (post-triggering).

Use the NumPrePostSamples scope property to specify pre- and post-triggering. A
negative value indicates pre-triggering and a positive value indicates post-triggering. For
example, suppose P is the value of NumPrePostSamples for Scope 1 and TP is the trigger
point, the sample where the trigger event occurs.

• P = 0 — Scope 1 starts acquiring data immediately at trigger point TP.

• P < 0 — Scope 1 starts acquiring data |P| samples before trigger point TP.

11 Real-Time Applications and Scopes in the MATLAB Interface

11-22

• P > 0 — Scope 1 starts acquiring data P samples after trigger point TP.

 Trigger One Scope with Another Scope

11-23

Trigger One Scope with Another Scope

When you have started two scopes that you want to keep synchronized, you can trigger
one scope with another to acquire data. Set up the first scope with the trigger of your
choice, and then trigger the second scope from the first.

In this setup, Scope 1 triggers Scope 2.

1 Two scope objects are configured as a vector with the command:

tg = slrt;

sc = addscope(tg, 'host', [1 2]);

2 For Scope 1, set these values:

sc(1).ScopeId = 1

sc(1).NumSamples = N1

sc(1).NumPrePostSamples = P1

3 For Scope 2, set these values:

sc(2).ScopeId = 2

sc(2).NumSamples = N2

sc(2).TriggerMode = 'Scope'

sc(2).TriggerScope = 1

sc(2).NumPrePostSamples = P2

Because Scope 2 is triggered by Scope 1, the trigger point TP is the same for both scopes.
However, different samples can be acquired by Scopes 1 and 2.

Scope-Triggered Data Acquisition

Some representative relationships between data acquisitions by Scope 1 and Scope 2 are
shown in the figures. P1 and P2 are the values of NumPrePostSamples for Scopes 1 and
2. TP is the trigger point, the sample where a trigger event occurs, for both Scopes 1 and
2. Scope 2 begins acquiring data as described.

• P1 = 0 and P2 = 0 — Scopes 1 and 2 start acquiring data immediately at trigger
point TP.

11 Real-Time Applications and Scopes in the MATLAB Interface

11-24

• P1 < 0 and P2 > 0 — Scope 1 starts acquiring data |P1| samples before trigger
point TP. Scope 2 starts acquiring data P2 samples after trigger point TP.

 Trigger One Scope with Another Scope

11-25

• P1 > 0 and P2 < 0— Scope 1 starts acquiring data P1 samples after trigger point
TP. Scope 2 starts acquiring data |P2| samples before trigger point TP.

11 Real-Time Applications and Scopes in the MATLAB Interface

11-26

Trigger Sample Setting

For additional flexibility in scope triggering, you can use the Scope 2 trigger sample
setting.

sc(2).TriggerSample = range 0 to (N + P1 - 1)

• sc(2).TriggerSample = 0 (default) — Scope 2 triggers when Scope 1 triggers.
Trigger point TP is the same sample for both scopes.

 Trigger One Scope with Another Scope

11-27

• sc(2).TriggerSample = ts > 0 — Scope 2 triggers ts samples after Scope 1 is
triggered. Trigger point TP2 for Scope 2 is ts samples after TP1 for Scope 1.

11 Real-Time Applications and Scopes in the MATLAB Interface

11-28

Setting sc(2).TriggerSample to a value ts larger than (N + P - 1) does not
cause an error. It implies that Scope 2 cannot be triggered, because Scope 1 cannot
acquire more than (N + P - 1) samples after TP.

• sc(2).TriggerSample = -1 (special case) — Causes Scope 2 to start acquiring
data from the sample after Scope 1 stops acquiring.

 Trigger One Scope with Another Scope

11-29

11 Real-Time Applications and Scopes in the MATLAB Interface

11-30

Acquire Gap-Free Data Using Two Scopes

With two scopes, you can acquire gap-free data. Gap-free data is data that two scopes
acquire consecutively, without overlap. The first scope acquires data up to sample N, then
stops. The second scope begins to acquire data at sample N+1.

In this example, the TriggerMode property of Scope 1 is set to 'Software'. This
setting allows Scope 1 to be triggered when it receives the MATLAB command
trigger(sc1).

To programmatically acquire gap-free data with two scopes:

1 Build and download the Simulink model xpcosc to the target computer.
2 In the MATLAB Command Window, assign tg to the target computer and set the

StopTime property to 1. For example:

tg = slrt;

tg.StopTime = 1;

3 Add two host scopes to the real-time application. You can assign the two scopes to a
vector, sc, so that you can work with both scopes with one command.

 Acquire Gap-Free Data Using Two Scopes

11-31

sc = addscope(tg, 'host', [1 2]);

4 Add the signals of interest (0 and 1) to both scopes.

addsignal(sc,[0 1]);

5 Set the NumSamples property for both scopes to 500 and the TriggerSample
property for both scopes to -1. With this property setting, each scope triggers the
next scope at the end of its 500 sample acquisition.

sc.NumSamples = 500

sc.TriggerSample = -1

6 Set the TriggerMode property for both scopes to 'Scope'. Set the TriggerScope
property such that each scope is triggered by the other.

sc.TriggerMode = 'Scope';

sc(1).TriggerScope = 2;

sc(2).TriggerScope = 1;

7 Set up storage for time, t, and signal, data acquisition.

t = [];

data = zeros(0, 2);

8 Start both scopes and the model.

start(sc);

start(tg);

Both scopes receive exactly the same signals, 0 and 1.
9 Trigger scope 1 to start acquiring data.

scNum = 1;

trigger(sc(scNum));

Setting scNum to 1 indicates that scope 1 will acquire data first.
10 Start acquiring data using the two scopes to double buffer the data.

while (1)

 % Wait until this scope has finished acquiring 500 samples

 % or the model stops (scope is interrupted).

 while ~(strcmp(sc(scNum).Status, 'Finished') || ...

 strcmp(sc(scNum).Status, 'Interrupted')), end

 % Stop buffering data when the model stops.

 if strcmp(tg.Status, 'stopped')

11 Real-Time Applications and Scopes in the MATLAB Interface

11-32

 break

 end

 % Save the data.

 t(end + 1 : end + 500) = sc(scNum).Time;

 data(end + 1 : end + 500, :) = sc(scNum).Data;

 % Restart this scope.

 start(sc(scNum));

 % Switch to the next scope.

% Shortcut for if(scNum == 1) scNum = 2;else scNum = 1,end

scNum = 3 - scNum;

end

11 When done, remove the scopes.

% Remove the scopes we added.

remscope(tg,[1 2]);

Following is a complete code listing for the preceding double-buffering data acquisition
procedure. After you download the model (xpcosc) to the target computer, you can copy
and paste this code into a MATLAB file and run it. The communication speed between
the development and target computers must be fast enough to handle the number of
samples and can acquire the full data set before the next acquisition cycles starts. In
a similar way, you can use more than two scopes to implement a triple- or quadruple-
buffering scheme.
% Assumes model xpcosc.mdl has been built and loaded on the target computer.

% Attach to the target computer and set StopTime to 1 sec.

tg = slrt;

tg.StopTime = 1;

% Add two host scopes.

sc = addscope(tg,'host', [1 2]);

% [0 1] are the signals of interest. Add to both scopes.

addsignal(sc,[0 1]);

% Each scope triggers next scope at end of a 500 sample acquisition.

sc.NumSamples = 500;

sc.TriggerSample', -1;

sc.TriggerMode = 'Scope';

sc(1).TriggerScope = 2;

sc(2).TriggerScope = 1;

% Initialize time and data log.

t = [];

data = zeros(0, 2);

% Start the scopes and the model.

start(sc);

start(tg);

% Start things off by triggering scope 1.

scNum = 1;

trigger(sc(scNum));

% Use the two scopes as a double buffer to log the data.

while (1)

 Acquire Gap-Free Data Using Two Scopes

11-33

 % Wait until this scope has finished acquiring 500 samples

 % or the model stops (scope is interrupted).

 while ~(strcmp(sc(scNum).Status, 'Finished') || ...

 strcmp(sc(scNum).Status, 'Interrupted')), end

 % Stop buffering data when the model stops.

 if strcmp(tg.Status, 'stopped')

 break

 end

 % Save the data.

 t(end + 1 : end + 500) = sc(scNum).Time;

 data(end + 1 : end + 500, :) = sc(scNum).Data;

 % Restart this scope.

 start(sc(scNum));

 % Switch to the next scope.

 scNum = 3 - scNum;

end

% Remove the scopes we added.

remscope(tg,[1 2]);

% Plot the data.

plot(t,data); grid on; legend('Signal 0','Signal 1');

12

Logging Signal Data with File System
Objects

• “File System Basics” on page 12-2
• “Using SimulinkRealTime.fileSystem Objects” on page 12-4

12 Logging Signal Data with File System Objects

12-2

File System Basics

Simulink Real-Time file scopes create files on the target computer. To work
with these files from the development computer, you need to work with the
SimulinkRealTime.fileSystem object. The SimulinkRealTime.fileSystem object
allows you to perform file system-like operations on the target computer file system.

You cannot direct the scope to write the data to a file on the Simulink Real-Time
development computer. Once the software has written the signal data file to the target
computer, you can access the contents of the file for plotting or other inspection from the
development computer.

The software can write data files to:

• Target computer hard drive. This can be a serial ATA (SATA) or parallel ATA (PATA)/
Integrated Device Electronics (IDE) drive. The Simulink Real-Time software supports
file systems of type FAT-12, FAT-16, or FAT-32 only.

Verify that the hard drive is not cable-selected and that the target computer BIOS can
detect it. The maximum file size is limited by the file system type (FAT-12, FAT-16, or
FAT-32). The target computer file system uses the 8.3 file name convention. A target
computer file name cannot exceed 8 characters and a file extension cannot exceed 3
characters (ABCD5678.ABC).

A Simulink Real-Time file scope can access multiple partitions on the target computer
hard drive, provided they are formatted with FAT-12, FAT-16, or FAT-32. Simulink
Real-Time ignores other file systems.

• Disks connected to a secondary IDE controller. The software supports up to four
drives through the second IDE controller. By default, it works with drives configured
as the primary master. If you want to use a secondary IDE controller, you must
configure the Simulink Real-Time software for it (see “Converting Simulink Real-
Time File Format Content to Double Precision Data” on page 12-7). The software
searches for another drive in the first four ports of the target computer.

• 3.5-inch disk drive. Note that writing data files to 3.5-inch disk drives is considerably
slower than writing to hard drives.

The following limitations hold:

• At most eight files can be open on the target computer at the same time.
• The largest single file that you can create is 4 GB.

 File System Basics

12-3

You can access signal data files, or other target computer system files, in one of the
following ways:

• If running the target computer standalone, you can access a file by restarting the
target computer under an operating system such as DOS and accessing the file
through the operating system utilities.

• If running the target computer linked to a development computer, you can
access the target computer file system from the development computer using a
SimulinkRealTime.fileSystem function.

You can perform file transfer operations using the functions
SimulinkRealTime.copyFileToHost and SimulinkRealTime.copyFileToTarget.

You can perform file system-like tasks using functions
such as SimulinkRealTime.fileSystem.fopen and
SimulinkRealTime.fileSystem.fread on the signal data file. File system functions
work like the corresponding MATLAB file I/O functions.

The SimulinkRealTime.fileSystem class also includes file system utilities that allow
you to collect target computer file system information for the disk and disk buffers.

This topic focuses primarily on using the SimulinkRealTime.fileSystem functions
to work with target computer data files that you generate from a real-time Scope of type
file.

For an example of how to perform data logging with file scopes, see “Data Logging With a
File Scope”.

12 Logging Signal Data with File System Objects

12-4

Using SimulinkRealTime.fileSystem Objects

In this section...

“Copying a File from the Target Computer to the Development Computer” on page
12-5
“Copying a File from the Development Computer to the Target Computer” on page
12-5
“Accessing File Systems on a Specific Target Computer” on page 12-6
“Reading the Contents of a File on the Target Computer” on page 12-7
“Removing a File from the Target Computer” on page 12-9
“Getting a List of Open Files on the Target Computer” on page 12-9
“Getting Information about a File on the Target Computer” on page 12-10
“Getting Information about a Disk on the Target Computer” on page 12-11

The fileSystem object enables you to work with the target computer file system from
the development computer. You enter target object functions in the MATLAB window
on the development computer or use scripts. The fileSystem object has functions that
allow you to use

• SimulinkRealTime.fileSystem.cd to change folders
• SimulinkRealTime.fileSystem.dir to list the contents of the current folder
• SimulinkRealTime.fileSystem.mkdir to make a folder
• SimulinkRealTime.fileSystem.pwd to get the current working folder path
• SimulinkRealTime.fileSystem.rmdir to remove a folder
• SimulinkRealTime.fileSystem.diskinfo to get information about the specified

disk
• SimulinkRealTime.fileSystem.fclose to close a file (similar to MATLAB

fclose)
• SimulinkRealTime.fileSystem.fileinfo to get information about a particular

file
• SimulinkRealTime.fileSystem.filetable to get information about files in the

file system
• SimulinkRealTime.fileSystem.fopen to open a file (similar to MATLAB fopen)
• SimulinkRealTime.fileSystem.fread to read a file (similar to MATLAB fread)

 Using SimulinkRealTime.fileSystem Objects

12-5

• SimulinkRealTime.fileSystem.fwrite to write a file (similar to MATLAB
fwrite)

• SimulinkRealTime.fileSystem.getfilesize to get the size of a file in bytes
• SimulinkRealTime.fileSystem.removefile to remove a file from the target

computer

Useful global functions:

• SimulinkRealTime.copyFileToHost to retrieve a file from the target computer to
the development computer

• SimulinkRealTime.copyFileToTarget to place a file from the development
computer on the target computer

• SimulinkRealTime.utils.getFileScopeData, to interpret the raw data from the
fread function

These procedures assume that the target computer has a signal data file created by a
Simulink Real-Time file scope. This file has the pathname C:\data.dat.

Copying a File from the Target Computer to the Development Computer

You can copy a data file from the target computer to the development computer using a
SimulinkRealTime package function on the development computer.

For example, to retrieve a file named data.dat from the target computer C:\ drive
(default):

1 If you have not already done so, in the MATLAB window, type the following to assign
the default SimulinkRealTime.target object to a variable.

tg = slrt;

2 Type

SimulinkRealTime.copyFileToHost(tg,'data.dat')

This retrieves the file and saves that file to the variable data. This content is in the
Simulink Real-Time file format.

Copying a File from the Development Computer to the Target Computer

You can copy a file from the development computer to the target computer using a
SimulinkRealTime package function on the development computer.

12 Logging Signal Data with File System Objects

12-6

For example, to copy a file named data2.dat from the development computer to the
target computer C:\ drive (default),

1 If you have not already done so, in the MATLAB window, type the following to assign
the default SimulinkRealTime.target object to a variable.

tg = slrt;

2 Type the following to save that file to the variable data.

SimulinkRealTime.copyFileToTarget(tg,'data2.dat')

Accessing File Systems on a Specific Target Computer

You can access specific target computer files from the development computer for the
SimulinkRealTime.fileSystem object.

Use the SimulinkRealTime.fileSystem creator function. If your system has multiple
targets, you can access specific target computer files from the development computer for
the SimulinkRealTime.fileSystem object.

For example, to list the name of the current folder of target computer 'TargetPC1':

1 In the MATLAB window, type a command like the following to assign the
SimulinkRealTime.fileSystem object for the default computer to a variable.

fsys = SimulinkRealTime.fileSystem;

2 Type

dir(fsys)

Alternatively, you can use the SimulinkRealTime.target constructor to construct
a target object for a specific computer, then use that target object as an argument to
SimulinkRealTime.fileSystem.

1 In the MATLAB window, type a command like the following to assign the
SimulinkRealTime.target object for target computer 'TargetPC1' to a variable.

tg1 = SimulinkRealTime.target('TargetPC1');

2 Type the following command to assign the SimulinkRealTime.fileSystem object
to a variable.

fsys = SimulinkRealTime.fileSystem(tg1);

 Using SimulinkRealTime.fileSystem Objects

12-7

3 Type

dir(fsys)

Reading the Contents of a File on the Target Computer

You can read the contents of a data file from the target computer by using
SimulinkRealTime.fileSystem functions on the development computer. This is an
alternate method to “Configure File Scopes Using MATLAB Language” on page 5-94.

Use the function_name(fs_object, argument_list) syntax to run a
SimulinkRealTime.fileSystem object function. For example, to retrieve the contents
of a file named data.dat from the target computer C:\ drive (default),

1 If you have not already done so, in the MATLAB window, type the following to assign
the SimulinkRealTime.fileSystem object to a variable.

fsys = SimulinkRealTime.fileSystem;

2 Type

h = fopen(fsys, 'data.dat');

This opens the file data.dat for reading and assigns the file identifier to h.
3 Type

data2 = fread(fsys,h);

This reads the file data.dat and stores the contents of the file to data2. This
content is in the Simulink Real-Time file format.

4 Type

fclose(fsys, h)

This closes the file data.dat.

Before you can view or plot the contents of this file, you must convert the contents. See
“Converting Simulink Real-Time File Format Content to Double Precision Data” on page
12-7.

Converting Simulink Real-Time File Format Content to Double Precision Data

The Simulink Real-Time software provides the function
SimulinkRealTime.utils.getFileScopeData to convert Simulink Real-Time

12 Logging Signal Data with File System Objects

12-8

file format content (in bytes) to double precision data representing the signals and
timestamps. The SimulinkRealTime.utils.getFileScopeData function takes
in data from a file in Simulink Real-Time format. The data must be a vector of bytes
(uint8). To convert the data to uint8, use a command like the following:

data2 = uint8(data2');

This section assumes that you have a variable, data2, that contains data in the Simulink
Real-Time file format (see “Reading the Contents of a File on the Target Computer” on
page 12-7):

1 In the MATLAB window, change folder to the folder that contains the Simulink Real-
Time format file.

2 Type

new_data2 = SimulinkRealTime.utils.getFileScopeData(data2);

SimulinkRealTime.utils.getFileScopeData converts the format of data2
from the Simulink Real-Time file format to an array of bytes. It also creates a
structure for that file in new_data2, of which one of the elements is an array of
doubles, data. The data member is also appended with a time stamp vector. The
data is returned as doubles, which represent the real-world values of the original
Simulink signals at the specified times during target execution.

You can view or examine the signal data. You can also plot the data with
plot(new_data2.data).

If you are using the Simulink Real-Time software in StandAlone mode, you can extract
the data from the data file if you know the number of signals in the scope and file header
size. If you know these numbers, you can extract the data. Note the following:

• First determine the file header size. To obtain the file header size, ignore the first
eight bytes of the file. The next four bytes store the header size as an unsigned
integer.

• After the header size number of bytes, the file stores the signals sequentially as
doubles. For example, assume the scope has three signals, x, y, and z. Assume that
x[0] is the value of x at sample 0, x[1] is the value at sample 1, and so forth, and
t[0], t[1] are the simulation time values at samples 0, 1, and so forth, respectively.
The file saves the data using the following pattern:

x[0] y[0] z[0] t[0] x[1] y[1] z[1] t[1] x[2] y[2] z[2] t[2]...

x[N] y[N] z[N] t[N]

 Using SimulinkRealTime.fileSystem Objects

12-9

N is the number of samples acquired. The file saves x, y, z, and t as doubles at 8 bytes
each.

Removing a File from the Target Computer

You can remove a file from the target computer by using Simulink Real-Time functions
on the development computer for the SimulinkRealTime.fileSystem object. If you
have not already done so, close this file first with fclose.

Use the function_name(fs_object, argument_list) syntax to run a
SimulinkRealTime.fileSystem object function. For example, to remove a file named
data2.dat from the target computer C:\ drive (default),

1 If you have not already done so, in the MATLAB window, type the following to assign
the SimulinkRealTime.fileSystem object to a variable.

fsys = SimulinkRealTime.fileSystem;

2 Type the following to remove the specified file from the target computer.

removefile(fsys,'data2.dat')

Getting a List of Open Files on the Target Computer

You can get a list of open files on the target computer file system from the development
computer by using Simulink Real-Time functions on the development computer for the
SimulinkRealTime.fileSystem object. Do this to identify files you can close. The
target computer file system limits the number of open files you can have to eight.

Use the function_name(fs_object, argument_list) syntax to run a
SimulinkRealTime.fileSystem object function. For example, to get a list of open files
for the file system object fsys,

1 If you have not already done so, in the MATLAB window, type the following to assign
the SimulinkRealTime.fileSystem object to a variable.

fsys = SimulinkRealTime.fileSystem;

2 Type

filetable(fsys)

12 Logging Signal Data with File System Objects

12-10

If the file system has open files, a list like the following is displayed:

ans =

Index Handle Flags FilePos Name

--

 0 00060000 R__ 8512 C:\DATA.DAT

 1 00080001 R__ 0 C:\DATA1.DAT

 2 000A0002 R__ 8512 C:\DATA2.DAT

 3 000C0003 R__ 8512 C:\DATA3.DAT

 4 001E0001 R__ 0 C:\DATA4.DA

3 The table returns the open file handles in hexadecimal. To convert a handle to one
that other SimulinkRealTime.fileSystem functions, such as fclose, can use,
use the hex2dec function. For example,

h1 = hex2dec('001E0001')

h1 =

1966081

4 To close that file, use the SimulinkRealTime.fileSystem fclose function. For
example,

fclose(fsys, h1)

Getting Information about a File on the Target Computer

You can display information for a file on the target computer file system from the
development computer by using Simulink Real-Time functions on the development
computer for the SimulinkRealTime.fileSystem object.

Use the function_name(fs_object, argument_list) syntax to run a
SimulinkRealTime.fileSystem object function. For example, to display the
information for the file identifier fid1,

1 If you have not already done so, in the MATLAB window, type the following to assign
the SimulinkRealTime.fileSystem object to a variable.

fsys = SimulinkRealTime.fileSystem;

2 Type

fid1 = fopen(fsys, 'data.dat');

This opens the file data.dat for reading and assigns the file identifier to fid1.

 Using SimulinkRealTime.fileSystem Objects

12-11

3 Type

fileinfo(fsys, fid1)

This returns disk information like the following for the C:\ drive file system.

ans =

 FilePos: 0

 AllocatedSize: 12288

 ClusterChains: 1

 VolumeSerialNumber: 1.0450e+009

 FullName: 'C:\DATA.DAT'

Getting Information about a Disk on the Target Computer

You can display information for a disk on the target computer file system from the
development computer by using Simulink Real-Time functions on the development
computer for the SimulinkRealTime.fileSystem object.

Use the function_name(fs_object, argument_list) syntax to run a
SimulinkRealTime.fileSystem object function. For example, to display the disk
information for the C:\ drive,

1 If you have not already done so, in the MATLAB window, type the following to assign
the SimulinkRealTime.fileSystem object to a variable.

fsys = SimulinkRealTime.fileSystem;

2 Type

diskinfo(fsys, 'C:\');

This returns disk information like the following for the C:\ drive file system.

ans =

 Label: 'SYSTEM '

 DriveLetter: 'C'

 Reserved: ''

 SerialNumber: 1.0294e+009

 FirstPhysicalSector: 63

 FATType: 32

 FATCount: 2

 MaxDirEntries: 0

 BytesPerSector: 512

12 Logging Signal Data with File System Objects

12-12

 SectorsPerCluster: 4

 TotalClusters: 2040293

 BadClusters: 0

 FreeClusters: 1007937

 Files: 19968

 FileChains: 22480

 FreeChains: 1300

 LargestFreeChain: 64349

Troubleshooting

13

Getting Started with Troubleshooting

Refer to these guidelines, hints, and tips for questions or issues you might have about
your installation of the Simulink Real-Time product. For more specific troubleshooting
solutions, go to the MathWorks® Support Simulink Real-Time website (http://
www.mathworks.com/support/search_results.html?q=product:"Simulink

+Real-Time").

http://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"
http://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"
http://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"

13 Getting Started with Troubleshooting

13-2

Troubleshooting Procedure

A Simulink Real-Time installation can sometimes fail. Causes include development and
target computer failures, changes in underlying system software, I/O module failures,
and procedural errors. Follow this procedure to address these problems:

1 Run the confidence test (see “Run Confidence Test on Configuration”).

Tip Run the confidence test as the first step in troubleshooting, as well as in
validating your initial product installation and configuration.

2 If one or more tests fail, see the following information about the specific failure:

• “Test 1: Ping Using System Ping” on page 14-2
• “Test 2: Ping Using slrtpingtarget” on page 14-5
• “Test 3: Restart Target Computer” on page 14-7
• “Test 4: Build and Download xpcosc” on page 14-9
• “Test 5: Check Ethernet and Serial Links” on page 14-12
• “Test 6: Download Prebuilt Real-Time Application” on page 14-13
• “Test 7: Execute Real-Time Application” on page 14-14
• “Test 8: Upload Logged Data and Compare” on page 14-15

3 Check the categorized questions and answers for clues to the root cause of the
problem.

4 If the tests run, but task execution time is slow or the CPU overloads, see the
questions and answers for Real-Time Application Performance.

5 Check the MathWorks Support website, MATLAB Answers, and MATLAB Central
for tips. If these do not solve your problem, call MathWorks Technical Support. See
“Getting Simulink Real-Time Support” on page 26-2.

14

Confidence Test Failures

This topic describes guidelines, hints, and tips for questions or issues you might have
while using the Simulink Real-Time product. Refer to the MathWorks Support Simulink
Real-Time website (http://www.mathworks.com/support/search_results.html?
q=product:"Simulink+Real-Time") for specific troubleshooting solutions. The
Simulink Real-Time documentation is also available from this site.

• “Test 1: Ping Using System Ping” on page 14-2
• “Test 2: Ping Using slrtpingtarget” on page 14-5
• “Test 3: Restart Target Computer” on page 14-7
• “Test 4: Build and Download xpcosc” on page 14-9
• “Test 5: Check Ethernet and Serial Links” on page 14-12
• “Test 6: Download Prebuilt Real-Time Application” on page 14-13
• “Test 7: Execute Real-Time Application” on page 14-14
• “Test 8: Upload Logged Data and Compare” on page 14-15

http://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"
http://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"

14 Confidence Test Failures

14-2

Test 1: Ping Using System Ping

If you are using a network connection, this test is a standard system ping to your target
computer.

Note: The confidence test skips test 1 for serial connections.

Troubleshoot failures with the following procedure:

1 Open a DOS shell and type the IP address of the target computer:

ping xxx.xxx.xxx.xxx

Check the messages on your screen.

If DOS displays a message similar to the following, system ping succeeds even
though test 1 fails.

Pinging xxx.xxx.xxx.xxx with 32 bytes of data:

Reply from xxx.xxx.xxx.xxx: bytes-32 time<10 ms TTL=59

If the DOS shell displays the following message, the system ping command failed.

Pinging xxx.xxx.xxx.xxx with 32 byte of data:

Request timed out.

2 Ping succeeds — Ethernet addresses OK?

If ping succeeds, check whether you entered the required IP and gateway addresses
in Simulink Real-Time Explorer:

a Type slrtexplr in the MATLAB Command Window.
b In the Targets pane, expand the target computer node.
c Click the Target Properties icon in the toolbar or double-click Properties.
d Select Host-to-Target communication.
e Verify that IP address, Subnet mask, and Gateway boxes contain the

required values.
f Select Boot configuration.

 Test 1: Ping Using System Ping

14-3

g Click Create boot disk.
h Reboot the target computer with the new kernel.

3 Ping fails — Cables OK?

If ping fails, first check your network cables. You might have a faulty network cable
or, if you are using a coaxial cable, the terminators might be missing.

4 Ping fails — Simulink Real-Time properties OK?

Check that you have entered the required properties in Simulink Real-Time
Explorer:

a Type slrtexplr in the MATLAB Command Window.
b In the Targets pane, expand the target computer node.
c Click the Target Properties icon in the toolbar or double-click Properties.
d Select Host-to-Target communication.
e Verify that IP address, Subnet mask, and Gateway boxes contain the

required values.
f Verify that the bus settings match those of the target computer:

• For a PCI computer: check that Bus type is set to PCI instead of ISA.
• For an ISA computer:

• Check that Bus type is set to ISA instead of PCI.
• Check that Address is set to the required I/O port base address and that

the address does not conflict with that of another resource.
• Check that IRQ is set to the required IRQ line and that the IRQ line does

not conflict with that of another resource.
• If the target computer motherboard contains a PCI chip set, check

whether the target computer BIOS reserves the IRQ line used by the ISA
bus Ethernet card.

g Select Boot configuration.
h Click Create boot disk.
i Reboot the target computer with the new kernel.

5 Ping fails — Ethernet interface operating?

14 Confidence Test Failures

14-4

Verify that your Ethernet protocol interface is operating. For example, check that the
green “ready” light goes on when the cable is connected to the Ethernet card.

6 Ping fails — Ethernet card supported?

Verify that you are using a supported Ethernet card on the target computer. See
“Ethernet Link Setup” for further details, including supplied Ethernet cards.

7 Ping fails — Not a locally mounted folder?

Run slrttest from a locally mounted folder, such as Z:\work, rather than from a
UNC network folder, such as \\Server\user\work.

8 If these steps do not solve your problem, check the questions and answers for Serial
and Ethernet Links and section “Faulty BIOS Settings on Target Computer” on page
16-2.

9 If you still cannot solve your problem, see “Getting Simulink Real-Time Support” on
page 26-2.

 Test 2: Ping Using slrtpingtarget

14-5

Test 2: Ping Using slrtpingtarget

This test is a Simulink Real-Time ping to your target computer. Troubleshoot failures
with the following procedure:

1 In the MATLAB Command Window, type

tg = SimulinkRealTime.target('argument-list')

where argument-list is the connection information that indicates which target
computer you are working with. If you do not specify arguments, the software
assumes that you are communicating with the default target computer.

Check the messages in the MATLAB Command Window.

MATLAB should respond with the following messages:

Target: TargetPC1

 Connected = Yes

 Application = loader

2 Not connected — Bad target boot kernel?

If you do not get the preceding messages, you could have a bad target boot kernel. To
solve this problem, create a new target boot kernel and reboot the target computer
with the new kernel. See “Target Boot Methods”.

3 Not connected — Environment variables set?

Use Simulink Real-Time Explorer to check the environment variables, in particular
the target computer IP address. If test 1 passes but test 2 fails, you might not have
entered the required IP address.

4 Not connected — Ethernet card supported?

If you are using a TCP/IP connection, make sure you are using a supported Ethernet
card (see “Test 1: Ping Using System Ping” on page 14-2).

5 Not connected — RS-232 configuration?

If you are using an RS-232 connection, check the following:

• Verify that you are using a null modem cable (see “Serial Protocol Hardware”).
• Verify that the COM ports on the development and target computers are enabled

in the BIOS. If they are disabled, test 2 fails.

14 Confidence Test Failures

14-6

• Verify that the specified COM port is connected on each computer.
• Verify that the COM port being used matches the port specified in the target

computer configuration.

Note: RS-232 communication type will be removed in a future release. Use TCP/IP
instead.

6 If these steps do not solve your problem, check the questions and answers for
Ethernet and Serial Links and section “Faulty BIOS Settings on Target Computer”
on page 16-2.

7 If you still cannot solve your problem, see “Getting Simulink Real-Time Support” on
page 26-2.

 Test 3: Restart Target Computer

14-7

Test 3: Restart Target Computer

This test tries to boot your target computer using a Simulink Real-Time command.

Note: This procedure assumes that you have set environment settings with Simulink
Real-Time Explorer. See “Serial Link Setup” or “Ethernet Link Setup”.

Troubleshoot failures with the following procedure:

1 In the MATLAB Command Window, type

slrttest('-noreboot')

This command reruns the test without using the
SimulinkRealTime.target.reboot command and displays the message

Test 3, Software reboot the target computer: ... SKIPPED

2 Build Succeeded — Software reboot supported?

Check the results of Test 4, Build and download a Simulink Real-
Time application using model xpcosc. If slrttest skips the
SimulinkRealTime.target.reboot command but builds and loads the real-time
application without producing an error message, the problem could be that the target
computer does not support the Simulink Real-Time reboot command. In this case,
you need to restart using a physical reset button.

3 Build Failed — Kernel not loaded?

If you saw the following error, the kernel might not be loaded when the development
computer initiates communication with the target computer.

ReadFile Error: 6

Older Simulink Real-Time releases might receive this error. As a workaround, run
slrttest with the noreboot option. For example,

slrttest('-noreboot')

This command runs the test without trying to reboot the target computer. It displays
the following message:

14 Confidence Test Failures

14-8

Test 3, Software reboot the target computer: ... SKIPPED

4 Build Failed — Example model modified?

If you directly or indirectly modify the xpcosc example model supplied with the
product, test 3 is likely to fail.

Note: Do not modify the files installed with the Simulink Real-Time software. If you
want to modify one of these files, copy the file and modify the copy.

Restore the xpcosc example model to its original state by one of the following
methods:

• Recreate the original model by editing it in the following location:

matlabroot\toolbox\rtw\targets\xpc\xpcdemos

• Reinstall the software.
5 If these steps do not solve your problem, check the questions and answers for-Target

Computer Boot Process and section “Faulty BIOS Settings on Target Computer” on
page 16-2.

6 If you still cannot solve your problem, see “Getting Simulink Real-Time Support” on
page 26-2.

 Test 4: Build and Download xpcosc

14-9

Test 4: Build and Download xpcosc
This test tries to build and download the model xpcosc. Troubleshoot failures with the
following procedure:

1 In the MATLAB Command Window, check the error messages.

These messages help you locate where there is a problem.
2 Build Failed — Loader not ready?

If you get the following error message, reboot your target computer:

Simulink real-Time loader not ready

This error message is sometimes displayed even if the target screen shows that the
loader is ready.

3 Build Failed — Using full duplex?

If the link between the development computer and target computers is Ethernet, set
the development computer network interface card (NIC) card and hub to half-duplex
mode. Do not set the mode to full-duplex mode.

4 Build Failed — Compiler not supported?

Verify that a supported compiler is being used and that the blocks in the model can
be compiled with the given compiler and compiler version.

5 Build Failed — Compiler path?

All Microsoft Visual compiler components must be in the Microsoft Visual Studio
folder after installation. If the compiler is not installed at the required location, you
might get one of the following errors:

Error executing build command: Error using ==> make_rtw

Error using ==> rtw_c (SetupForVisual)

Invalid DEVSTUDIO path specified

or

Error executing build command: Error using ==> make_rtw

Error using ==> rtw_c

Errors encountered while building model "xpcosc"

along with the following MATLAB Command Window error:

14 Confidence Test Failures

14-10

NMAKE: fatal error U1064: MAKEFILE not found and no target

specified

Stop.

Verify your compiler setup:

a In the MATLAB command window, type:

slrtsetCC('setup')

This function queries the development computer for C compilers that the
Simulink Real-Time environment supports. It returns output like the following:
Select your compiler for Simulink Real-Time.

[1] Microsoft Visual C++ Compilers 2008 Professional Edition (SP1) in

 c:\Program Files (x86)\Microsoft Visual Studio 9.0

[2] Microsoft Visual C++ Compilers 2010 Professional in

 C:\Program Files (x86)\Microsoft Visual Studio 10.0

[0] None

Compiler:

b At the Compiler prompt, enter the number for the compiler that you want to
use. For example, 2.

The function verifies your selection:

Verify your selection:

Compiler: Microsoft Visual C++ Compilers 2010 Professional

Location: C:\Program Files (x86)\Microsoft Visual Studio 10.0

Are these correct [y]/n?

c Type y or press Enter to verify the selection.

The function finishes the dialog.

Done...

6 Build Failed — COM port read failed?

If you see the following MATLAB Command Window error:

ReadFile failed while reading from COM-port

 Test 4: Build and Download xpcosc

14-11

• Check the state of your target computer. If it is unresponsive, you might need to
reboot the target computer.

• In Simulink Real-Time Explorer, try to connect to the target computer again. Be
sure to also check the link between the development and target computers.

7 If these steps do not solve your problem, check the questions and answers for Model
Compilation, Real-Time Application Download, and Ethernet and Serial Links, and
section “Faulty BIOS Settings on Target Computer” on page 16-2.

8 If you still cannot solve your problem, see “Getting Simulink Real-Time Support” on
page 26-2.

14 Confidence Test Failures

14-12

Test 5: Check Ethernet and Serial Links

This error occurs only when the environment variable settings are out of date.
Troubleshoot failures with the following procedure:

1 Type slrtexplr in the MATLAB Command Window.
2 In the Targets pane, expand the target computer node.
3 Click the Target Properties icon in the toolbar or double-click Properties.
4 Select Host-to-Target communication and make the required changes to the

communication properties.

Note: RS-232 communication type will be removed in a future release. Use TCP/IP
instead.

5 Select Boot configuration.
6 Set the required Boot mode.

For information on boot options, see “Target Boot Methods”.
7 Click Create boot disk
8 Reboot the target computer.
9 Rerun slrttest.
10 If these steps do not resolve the issue, recreate the target boot kernel using

SimulinkRealTime.createBootImage, reboot the target computer, and rerun
slrttest.

11 If these steps do not solve your problem, check the questions and answers for
Ethernet and Serial Links and section “Faulty BIOS Settings on Target Computer”
on page 16-2.

12 If you still cannot solve your problem, see “Getting Simulink Real-Time Support” on
page 26-2.

 Test 6: Download Prebuilt Real-Time Application

14-13

Test 6: Download Prebuilt Real-Time Application

This test runs the basic target object constructor, slrt. This error rarely occurs unless
an earlier test has failed.

1 Verify that the preceding steps completed without producing an error message.
2 Configure, build and download the tutorial model and record whatever error

messages appear (see “Build and Download Real-Time Application”).
3 If these steps do not solve your problem, check the questions and answers for Real-

Time Application Download and Ethernet and Serial Links, and section “Faulty
BIOS Settings on Target Computer” on page 16-2.

4 If you still cannot solve your problem, see “Getting Simulink Real-Time Support” on
page 26-2.

14 Confidence Test Failures

14-14

Test 7: Execute Real-Time Application

This test executes a real-time application (xpcosc) on the target computer. This test fails
if you change the xpcosc model start time to something other than 0, such as 0.001.
This change causes the test, and the MATLAB interface, to halt. To address this failure:

1 Set the xpcosc model start time back to 0.
2 Rerun the test.
3 If these steps do not solve your problem, check the questions and answers for

Real-Time Application Execution, Real-Time Application Performance, Real-Time
Application Signals, and Real-Time Application Parameters and section “Faulty
BIOS Settings on Target Computer” on page 16-2.

4 If you still cannot solve your problem, see “Getting Simulink Real-Time Support” on
page 26-2.

 Test 8: Upload Logged Data and Compare

14-15

Test 8: Upload Logged Data and Compare

This test executes a real-time application (xpcosc) on the target computer. This test
might fail if you change the xpcosc model (for example, if you remove the Outport
block).

Note: Do not modify the files installed with the Simulink Real-Time software. If you
want to modify one of these files, copy the file and modify the copy.

1 To eliminate this problem, restore the xpcosc example model to its original state by
one of the following methods:

• Recreate the original model by editing it in the following location:

matlabroot\toolbox\rtw\targets\xpc\xpcdemos

• Reinstall the software.
2 Other issues might also cause this test to fail. If you still need more help, check the

following:

• If you are running a new Simulink Real-Time release, be sure that you have
a new target boot kernel for this release. See “Installing Simulink Real-Time
Software Updates” on page 26-3.

• There is a known issue with Simulink Real-Time software version 1.3. It might
occur when you run slrttest two consecutive times. See the known issue and
solution documented in http://www.mathworks.com/support/solutions/
data/1-18DTB.html.

3 If you are installing another version of the Simulink Real-Time software on top of
an existing version, check the version number of the current installation. At the
MATLAB command line, type slrtlib. The version number appears at the bottom
of the Simulink Real-Time block library window. If the version number is not the one
to which you want to upgrade, reinstall the software.

4 If these steps do not solve your problem, check the questions and answers for
Real-Time Application Execution, Real-Time Application Performance, Real-Time
Application Signals, and Real-Time Application Parameters and section “Faulty
BIOS Settings on Target Computer” on page 16-2.

5 If you still cannot solve your problem, see “Getting Simulink Real-Time Support” on
page 26-2.

http://www.mathworks.com/support/solutions/data/1-18DTB.html
http://www.mathworks.com/support/solutions/data/1-18DTB.html

15

Development Computer Configuration

15 Development Computer Configuration

15-2

Why Does Boot Drive Creation Halt?

If your development computer MATLAB interface halts while creating a Simulink Real-
Time boot disk or network boot image:

• Use another drive to create a new Simulink Real-Time boot drive or network boot
image.

• If your development computer has antivirus software, it might conflict with the
MATLAB software. Disable the software while using the MATLAB interface.

• Verify that the development computer drive is accessible. If it is not accessible,
replace the drive.

16

Target Computer Configuration

• “Faulty BIOS Settings on Target Computer” on page 16-2
• “Why is My Hard Drive Not Recognized?” on page 16-3
• “Allowable Partitions on the Target Hard Drive” on page 16-4
• “File System Disabled on the Target Computer” on page 16-5
• “Adjust the Target Computer Stack Size” on page 16-6
• “Where to Find PCI Board Information” on page 16-7
• “How to Diagnose My Board Driver” on page 16-8

16 Target Computer Configuration

16-2

Faulty BIOS Settings on Target Computer

The BIOS settings of a computer system influence how the computer works. If you
experience problems using the Simulink Real-Time software, check the system BIOS
settings of the target computer. These settings are beyond the control of the Simulink
Real-Time product. See “BIOS Settings”.

Faulty BIOS settings can cause issues like the following:

• Why is my target not booting?
• Why can SimulinkRealTime.targetgetPCIInfo detect PCI boards, but

autosearch -l cannot?
• Why can my standalone real-time application run on some target computers, but not

others?
• Why is my target computer crashing while downloading real-time applications?
• Why is my target PC104 hanging on boot?
• Why is my boot time slow?
• Why is my real-time application not running in real time?
• Why are my USB ports not working?

 Why is My Hard Drive Not Recognized?

16-3

Why is My Hard Drive Not Recognized?

Simulink Real-Time only recognizes a target computer hard drive formatted as FAT-12,
FAT-16, or FAT-32.

Simulink Real-Time does not recognize a SATA hard drive if the target computer BIOS
is set to AHCI or RAID mode. Change the BIOS to IDE mode if Simulink Real-Time does
not recognize your target hard drive.

16 Target Computer Configuration

16-4

Allowable Partitions on the Target Hard Drive

The target computer hard drive can contain one or multiple partitions. Simulink Real-
Time only recognizes a hard drive partition formatted as FAT-12, FAT-16, or FAT-32.

 File System Disabled on the Target Computer

16-5

File System Disabled on the Target Computer

If your target computer does not have a FAT hard disk, the monitor on the target
computer displays the following error:

ERROR -4: drive not found

No accessible disk found: file system disabled

If you do not want to access the target computer file system, you can ignore this message.
If you want to access the target computer file system, add a FAT hard disk to the target
computer system and reboot.

Tip Verify that the hard drive is not cable-selected and that the BIOS can detect it.

16 Target Computer Configuration

16-6

Adjust the Target Computer Stack Size

To discover and adjust the stack size used by the real-time threads on the target
computer:

1 Add the following blocks to your model:

• Current Available Stack Size — Outputs the number of bytes of stack memory
currently available to the real-time application thread.

• Minimum Available Stack Size — Outputs the number of bytes that have not
been used in the stack since the thread was created.

The block traverses the entire stack at every time step to find and report unused
bytes. Minimum Available Stack Size should be used only for diagnostic purposes.

2 Execute the real-time application, monitoring the stack size and minimal stack size.
3 Calculate a stack size that allows execution to proceed.

Note:

• To meet the memory requirements, you might have to reconfigure your target
computer.

• The Simulink Real-Time kernel can use only 4 GB of memory.
4 Adjust the stack size of the real-time threads using a TLCOptions setting.

For example, to set the stack size for real-time application xpcosc to 512 kBytes,
type the following in the MATLAB Command Window:

set_param('xpcosc','TLCOptions','-axPCModelStackSizeKB=512')

See Also
Current Available Stack Size | Minimum Available Stack Size |
TLCOptions Properties

 Where to Find PCI Board Information

16-7

Where to Find PCI Board Information

Information about the PCI devices in your target computer is useful if you want to
determine what PCI boards are installed in your Simulink Real-Time system, or if you
have multiple boards of a particular type in your system. Before you start, determine
what boards are installed in your target computer by typing the following in the
MATLAB Command Window:

tg = slrt;

getPCIInfo(tg, 'all')

If you have or want to use multiple boards of a particular type in your system, verify
that the I/O driver supports multiple boards. See the “Multiple board support” entry for
this board type in the Simulink Real-Time library or the Simulink Real-Time Interactive
Hardware Selection Guide:

http://www.mathworks.com/products/simulink-real-time/supported/

hardware-drivers.html.

If you confirm that the board type supports multiple boards, and these boards are
installed in the Simulink Real-Time system, do the following to obtain the bus and slot
information for these boards:

1 In the PCI devices display, note the contents of the Bus and Slot columns of the PCI
devices in which you are interested.

2 Enter the bus and slot numbers as vectors into the PCI Slot parameter of the PCI
device. For example:

[1 9]

where 1 is the bus number and 9 is the slot number.

For additional information about PCI bus I/O devices, refer to “PCI Bus I/O Devices”.

http://www.mathworks.com/products/simulink-real-time/supported/hardware-drivers.html
http://www.mathworks.com/products/simulink-real-time/supported/hardware-drivers.html

16 Target Computer Configuration

16-8

How to Diagnose My Board Driver

If you encounter issues using the Simulink Real-Time I/O drivers:

1 Display the input/output behavior of the board using an external instrument, such as
an oscilloscope or logic analyzer.

2 Verify that you have configured the I/O board driver according to the manufacturer’s
data sheet.

3 Verify that you are using the latest version of the I/O board driver and of the
Simulink Real-Time software. See “Installing Simulink Real-Time Software
Updates” on page 26-3.

4 Verify that the behavior persists when you run the real-time application on a
different target computer.

5 Verify that the behavior persists when you install another instance of the I/O board
in the target computer.

6 Download the manufacturer I/O driver and diagnostic software from the
manufacturer website, install the driver and software on your computer, and test the
I/O board using the manufacturer’s software.

7 Report the issue to MathWorks Support at http://www.mathworks.com/
support/contact_us/index.html.

http://www.mathworks.com/support/contact_us/index.html
http://www.mathworks.com/support/contact_us/index.html

17

Ethernet and Serial Links

• “Is There a Link Between the Computers?” on page 17-2
• “Boards with Slow Initialization” on page 17-4
• “Timeout with Multiple Ethernet Cards” on page 17-6
• “Recovery from Board Driver Errors” on page 17-8
• “How Can I Diagnose Network Problems?” on page 17-9

17 Ethernet and Serial Links

17-2

Is There a Link Between the Computers?

Use the following MATLAB commands from the development computer to validate the
link between the development and target computers:

• slrtpingtarget

The slrtpingtarget command performs a basic communication check between
the development and target computers. This command returns success only if the
Simulink Real-Time kernel is loaded and running and the development and target
computers are linked. Use this command for a quick check of the communication
between the development and target computers.

• slrttest

The slrttest command performs a series of tests on your Simulink Real-Time
system. These tests range from performing a basic link check to building and running
real-time applications. At the end of each test, the command returns an OK or failure
message. If the test is inappropriate for your setup, the command returns a SKIPPED
message. Use this command for a thorough check of your Simulink Real-Time
installation.

Link errors might also occur in the following instances:

• The target computer is running an old Simulink Real-Time boot kernel that is not in
sync with the Simulink Real-Time release installed on the development computer.
Create a new target boot kernel for each new release.

• If the communication between the development and target computers is Ethernet, set
the development computer network interface card (NIC) card and hub to half-duplex
mode. Do not set the mode to full-duplex mode.

• If you have an active firewall in your system, you might experience communication
errors. For example, build errors might occur if you try to build and download a model
with a thermocouple board (causing a slower initialization time) in a system that
contains a firewall. To work around this issue, you can add the MATLAB interface
to the firewall exception list. See also “Boards with Slow Initialization” on page
17-4

• To diagnose BIOS problems, see:

• “Faulty BIOS Settings on Target Computer” on page 16-2
• “BIOS Settings”

 Is There a Link Between the Computers?

17-3

• If multiple Ethernet cards or chips are installed in the target computer, see “Timeout
with Multiple Ethernet Cards” on page 17-6.

17 Ethernet and Serial Links

17-4

Boards with Slow Initialization

Some Simulink Real-Time boards take a long time to initialize. This situation might
cause the software to run out of time before a model downloads, causing the development
computer to disconnect from the target computer.

By default, if the development computer does not get a response from the target
computer after downloading a real-time application and waiting five seconds, the
development computer software times out. The target computer responds only after
downloading and initializing the real-time application.

Usually five seconds is enough time to initialize a real-time application, but in some
cases it might not be long enough. The time to download a real-time application mostly
depends on your I/O module. For example, thermocouples (such as the PCI-DAS-TC
board) take longer to initialize. With slower modules, you might also get errors when
building and downloading an associated model. Even though the target computer is fine,
a false timeout is reported and you might get an error like the following:

"cannot connect to ping socket"

This is not a fatal error. You can reestablish communication with the following
procedure:

1 Type slrtpingtarget at the MATLAB command prompt.
2 Wait for the system to return from the slrtpingtarget command. If

slrtpingtarget finds a working connection between the development and target
computers, the response is something like:

ans =

success

3 Restart the target object.

Alternatively, you can increase the timeout value, using the following procedure:

1 In your Simulink model, select Simulation > Model Configuration Parameters,
and navigate to the Simulink Real-Time Options node.

2 Clear the Use default communication timeout parameter.

The Specify the communication timeout in seconds parameter appears.

 Boards with Slow Initialization

17-5

3 Specify a new timeout value, in seconds. For example, enter 20 in parameter
Specify the communication timeout in seconds.

4 Click OK.
5 In the Simulink Editor window and from the Code menu, click C/C++ Code > Build

Model.

In this case, the development computer waits for about 20 seconds before declaring
that a timeout has occurred. It does not take 20 seconds for every download. The
development computer polls the target computer about once every second, and if a
response is returned, returns the success value. Only in the case where a download
really fails does it take the full 20 seconds.

17 Ethernet and Serial Links

17-6

Timeout with Multiple Ethernet Cards

The Simulink Real-Time product supports a number of Ethernet cards and chips, as
described in “Ethernet Link Setup”. If your target computer has more than one of these
cards or chips installed, you could experience timeout problems. For example, suppose
you are using the Network Boot option to boot the target computer. If the development
computer boots the target computer using Ethernet A on the target computer, it
associates the IP address of the target computer with the Media Access Control (MAC)
address of Ethernet adapter A. If, after it does so, the target computer BIOS connects
the target computer to Ethernet B, the Simulink Real-Time software cannot connect
the development and target computers because they are connected to different Ethernet
controllers.

First, try to disable or remove the Ethernet controller that you will not use. For example,
if you have both an on-board Ethernet controller and a separate Ethernet card, you could
disable the on-board Ethernet controller through the target computer BIOS. If you are
required to have multiple Ethernet adapters of the same type in the target computer, you
might need to experiment to determine which Ethernet adapter the software has chosen.

If you are not using the Network Boot option to boot the target computer and cannot
establish a link between the development and target computers:

1 Switch the network cable to the other Ethernet port and try again.
2 If you can establish communication, use this Ethernet port to connect the

development computer to the target computer.

If you are using the Network Boot option and experience this issue, do the following:

1 Connect the network cable to Ethernet adapter B.
2 In the MATLAB Command Window, type

!arp -d

This command removes the association between the target computer address and the
network address of Ethernet adapter A from the cache of the development computer.
This removal allows a new connection (and association) to be made.

3 Change the Ethernet adapter card that the Network Boot option uses. You can do
this in one of the following ways:

• Change the target computer BIOS to change the Ethernet adapter to the one that
the Network Boot option is looking for.

 Timeout with Multiple Ethernet Cards

17-7

• Follow the procedure “Ethernet Card Selection by Index” on page 4-24..

17 Ethernet and Serial Links

17-8

Recovery from Board Driver Errors

If an error in a driver causes the Simulink Real-Time system to crash, a timeout occurs
and slrtpingtarget fails with an error message. In such an event, you need to
reboot the target and reestablish communication between the development and target
computers.

To get the Simulink Real-Time system back up and running:

1 Remove the reference to the problem driver from the model.
2 Reboot the target computer.
3 At the MATLAB command line, issue slrtpingtarget to reestablish

communications.
4 If the driver with which you are having problems is one provided by MathWorks, try

to pinpoint the problem area (for example, determine whether certain settings in the
driver block cause problems).

Alternatively, you can exit and restart the MATLAB interface.

 How Can I Diagnose Network Problems?

17-9

How Can I Diagnose Network Problems?

If you experience network problems when using this product, use an available
computer with Internet access to refer to the MathWorks Support Simulink Real-
Time website (http://www.mathworks.com/support/search_results.html?
q=product:"Simulink+Real-Time"). This website has the most up-to-date
information about this topic.

http://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"
http://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"

18

Target Computer Start Process

• “Why Won’t the Target Computer Start?” on page 18-2
• “Why Won't the Kernel Load?” on page 18-4
• “Why Is the Target Medium Not Bootable?” on page 18-5
• “Why Is the Target Computer Halted?” on page 18-6

18 Target Computer Start Process

18-2

Why Won’t the Target Computer Start?

If your target computer cannot start with the Simulink Real-Time boot disk, removable
boot drive, or network boot image:

• Recreate the target boot kernel using new media.
• Verify using SimulinkRealTime.getTargetSettings that the current properties

in the Simulink Real-Time kernel correspond with the environment variables
displayed in the Host-to-Target communication and Target settings panes of
Simulink Real-Time Explorer.

Tip To display the current values of Simulink Real-Time environment properties
for the default target computer, type SimulinkRealTime.getTargetSettings
without arguments. To display their allowed values, type:

tgs = SimulinkRealTime.getTargetSettings;

tgs.set

• Verify that the Simulink Real-Time boot disk or removable boot drive contains files
like the following:

• BOOTSECT.RTT

• XPCTGB1.RTA

Note: The name of the last file varies depending on the communication method.
• If the .RTT and .RTA files are not complete, reinstall the software.
• If the target computer does not start and shows only a blank screen, to display

messages that the kernel prints during startup, type:

tgs = SimulinkRealTime.getTargetSettings;

tgs.TargetScope = 'Disabled'

Restart the computer.

If you see an error message similar to the following:

This target computer does not have an APIC,

which is required for the multicore kernel.

Please turn the MulticoreSupport target

setting off, recreate the boot image, and

 Why Won’t the Target Computer Start?

18-3

restart the target computer.

set tgs.MulticoreSupport = 'off', recreate the boot image, and restart the
target computer.

If the target computer boots without an error message, set tgs.TargetScope =
'Enabled'.

• If the target setting LegacyMultiCoreConfig is set to 'off', the Simulink Real-
Time kernel may not be able to discover system resources that are not compliant
with the Advanced Configuration and Power Interface (ACPI) standard. To allow the
kernel to discover such devices by using the legacy MPFPS in the computer BIOS:

tgs = SimulinkRealTime.getTargetSettings;

tgs.LegacyMultiCoreConfig = 'on'

By default, LegacyMultiCoreConfig is set to 'on'.
• If you are doing a network boot and the procedure displays a message similar to TFTP

Timeout:

• Verify that the xpctftpserver program is running. If it is not, recreate the
network boot image.

• Temporarily disable the Internet security (firewall) software on the development
computer. If you can now start:

• Follow the Internet security software instructions to allow the start procedure
to work in its presence. For example, add the MATLAB interface to the firewall
exception list.

• Reenable the Internet security software.
• If problems persist, see the questions and answers for Target Computer Start Process.
• If you still cannot start the target computer from a boot disk or removable boot drive,

you might need to replace the target computer disk drive.

18 Target Computer Start Process

18-4

Why Won't the Kernel Load?

When starting the target computer, you might see a message like the following:

Simulink Real-Time 4.X loading kernel..@@@@@@@@@@@@@@@@@@@@@@

The target computer displays this message when it cannot read and load the kernel from
the target boot disk.

The probable cause is a bad boot kernel. To diagnose this problem, recreate the target
boot kernel. If you have a removable boot drive, reformat the drive or use a new
formatted drive. If you have a boot CD, create a new boot disk. If you are using network
boot, recreate the network boot image.

 Why Is the Target Medium Not Bootable?

18-5

Why Is the Target Medium Not Bootable?

When starting the target computer, you might get a message similar to the following:

Not a bootable medium or NTLDR is missing

Selecting either DOS Loader or Stand Alone mode instead of Removable Disk mode
can cause this message.

To solve this problem:

1 Type slrtexplr in the MATLAB Command Window.
2 In the Targets pane, expand the target computer node.
3 Click the Target Properties icon in the toolbar or double-click Properties.
4 Select Boot configuration and select the desired entry in the Boot mode list.
5 Click Create boot disk..

18 Target Computer Start Process

18-6

Why Is the Target Computer Halted?

If your target computer displays a System Halted message while starting:

• Verify in the Host-to-Target communication pane of Simulink Real-Time Explorer
that the Target driver parameter is configured as required by your network.

• Recreate the target boot kernel using new media and use the new kernel to restart
the target computer.

• Verify that the Simulink Real-Time software supports your model of target computer.
Be sure to verify the Ethernet protocol interface hardware.

19

Modeling

• “How Do I Handle Encoder Register Rollover?” on page 19-2
• “How Can I Write Custom Device Drivers?” on page 19-3

19 Modeling

19-2

How Do I Handle Encoder Register Rollover?

Encoder boards have a fixed size counter register of 16 bits, 24 bits, or 32 bits. Regardless
of the size, the register eventually overflows and rolls over. Registers can roll over in
either the positive or negative direction.

Some boards provide a mechanism to account for overflows or rollovers. As a best
practice, you should design your model to deal with overflows or rollovers. Defining an
initial count can handle the issue for some system models.

To handle register rollovers, you can use standard Simulink blocks to design the
following counter algorithm types:

• Rollover Counter — Counts the number of times the output of an encoder block has
rolled over. This counter should count up for positive direction rollovers and down for
negative direction rollovers.

• Extended Counter — Provides a rollover count not limited by register size. For an n-
bit register, this counter should be able to count values greater than 2^(n-1).

The Incremental Encoder/Utilities/Rollover sublibrary of the Simulink Real-Time library
contains example blocks for these two types of counters. See Rollover Counter and
Extended Counter for further details. You can use these blocks in your model as is, or
modify them for your model. Connect the output of the encoder block to these blocks.

Note: To view the algorithms used in these implementations, right-click the subsystem
and select Mask > Look Under Mask.

Keep the following requirements in mind when using these blocks:

• Some driver blocks allow an initial starting value to be loaded into the register. You
must pass this value to the rollover blocks to adjust for that offset.

• The rollover block needs to know how many counts each rollover represents.
Typically, this number is 2^n, where n is the size of the register in bits.

 How Can I Write Custom Device Drivers?

19-3

How Can I Write Custom Device Drivers?

You might want to write your own driver if you want to include an unsupported device
driver in your Simulink Real-Time system. See “Custom I/O Drivers”.

Before you consider writing custom device drivers for the Simulink Real-Time system,
you should possess:

• Good C programming skills
• Knowledge of writing S-functions and compiling those functions as C-MEX functions
• Knowledge of SimStruct, a MATLAB Simulink C language header file that defines the

Simulink data structure and the SimStruct access macros. It encapsulates the data
required by the model or S-function, including block parameters and outputs.

• An excellent understanding of the I/O board. Because of the real-time nature of the
Simulink Real-Time system, you must develop drivers with minimal latency. Because
most drivers access the board at the lowest possible level (register programming), you
must have a good understanding of how to control a board with register information
and have access to the register-level programming manual for the device.

• A good knowledge of port and memory I/O access over various buses. You need this
information to access an I/O board at the register level.

20

Model Compilation

• “Requirements for Standalone Real-Time Applications” on page 20-2
• “Compiler Errors from Models Linked to DLLs” on page 20-3
• “Compilation Failure with WATCOM Compilers” on page 20-4

20 Model Compilation

20-2

Requirements for Standalone Real-Time Applications

To create a custom standalone interface running on the development computer to control
a real-time application running on the target computer, use the Simulink Real-Time
C API dynamic link library (DLL) or the Simulink Real-Time API for Microsoft .NET
Framework. See “Standalone Boot Method”.

 Compiler Errors from Models Linked to DLLs

20-3

Compiler Errors from Models Linked to DLLs

When building real-time applications, the Simulink Real-Time software supports links to
static link libraries (.lib) only, not links to dynamic link libraries (.dll), such as Windows
libraries. When you build your models, verify that you link only to static link libraries.
Linking to static libraries is not an issue when you compile with Simulink Real-Time S-
functions.

20 Model Compilation

20-4

Compilation Failure with WATCOM Compilers

The Open WATCOM compiler is not supported. Use a Microsoft compiler instead.

21

Real-Time Application Download

• “Why Does My Download Time Out?” on page 21-2
• “Increase the Time for Downloads” on page 21-3
• “Why Does the Download Halt?” on page 21-4

21 Real-Time Application Download

21-2

Why Does My Download Time Out?
If the development and target computers are not connected, or you have not entered the
required environment properties, the download process terminates after about 5 seconds
with a timeout error. Be sure that you have followed the instructions outlined in “System
Configuration” before continuing.

To diagnose the problem, use the following procedure:

1 Type slrtexplr in the MATLAB Command Window.
2 In the Targets pane, expand the target computer node.
3 Click the Target Properties icon in the toolbar or double-click Properties.
4 Select Host-to-Target communication and make the required changes to the

communication properties.

Note: RS-232 communication type will be removed in a future release. Use TCP/IP
instead.

5 Select Boot configuration and click Create boot disk.
6 Restart the target computer and try downloading the real-time application again.
7 In some cases, the download might have completed even though you get a timeout

error. To detect this condition, wait until the target display shows

System:initializing application finished.

8 Type slrtpingtarget at the MATLAB command prompt.

If slrtpingtarget finds a working connection between the development and target
computers, the response is something like:

ans =

success

9 Right-click the target computer in question and select Connect.

If the connection resumes, the connection is working. If the connection times out
consistently for a particular model, the timeout needs to be increased. See “Increase
the Time for Downloads” on page 21-3.

For information on setting up the Simulink Real-Time environment, see either “Serial
Link Settings” or “ISA Bus Ethernet Settings”, and then see “Target Boot Methods”.

 Increase the Time for Downloads

21-3

Increase the Time for Downloads

By default, if the development computer does not get a response from the target
computer after downloading a real-time application and waiting about 5 seconds, the
development computer software times out. On the other hand, the target computer
responds only after downloading and initializing the real-time application.

Usually 5 seconds is enough time to download a real-time application, but in some cases
it may not be long enough. The time to download a real-time application mostly depends
on your I/O module. For example, a thermocouple takes longer to initialize. In this case,
even though the target computer is fine, a false timeout is reported.

You can increase the timeout value in one of the following ways:

• At the model level, open the Simulink > Model Configuration Parameters dialog
box and navigate to the Simulink Real-Time Options node. Clear the Use default
communication timeout parameter and enter a new desired timeout value in the
Specify the communication timeout in seconds parameter. For example, enter
20 to increase the value to 20 s.

• At the real-time application level, set the CommunicationTimeOut property to the
desired timeout value. For example, to increase the value to 20 s:

tg = slrt;

tg.CommunicationTimeOut = 20

For both methods, the development computer polls the target computer about once every
second, and if a response is returned, returns the success value. Only if a download really
fails does the development computer wait the full twenty seconds.

21 Real-Time Application Download

21-4

Why Does the Download Halt?

If the MATLAB interface freezes and there are target ping errors, this failure is likely
the result of an active firewall, a long initialization process, or both combined. To
diagnose this problem, see:

• “Is There a Link Between the Computers?” on page 17-2
• “Boards with Slow Initialization” on page 17-4

“Timeout with Multiple Ethernet Cards” on page 17-6

22

Real-Time Application Execution

• “View Real-Time Application Execution from the Development Computer” on page
22-2

• “Sample Time Deviates from Expected Value” on page 22-3
• “What Measured Sample Time Can I Expect?” on page 22-5
• “Why Has the Stop Time Changed?” on page 22-6
• “Why Is the Web Interface Not Working?” on page 22-7

22 Real-Time Application Execution

22-2

View Real-Time Application Execution from the Development
Computer

Simulink Real-Time displays output from the real-time application on the target
computer monitor. You can view this output from the development computer using the
Simulink Real-Time real-time display window.

For a single-target system, type:

SimulinkRealTime.target.viewTargetScreen

For a particular target computer TargetPC1, type:

SimulinkRealTime.target.viewTargetScreen('TargetPC1')

The Simulink Real-Time display window is displayed on the development computer
monitor.

 Sample Time Deviates from Expected Value

22-3

Sample Time Deviates from Expected Value

You might notice that the sample time you measure from your model is not equal to the
sample time you requested. This difference depends on your target computer. Your model
sample time is as close to your requested time as the target computer CPU allows.

However, digital processing does not allow infinite precision in setting the spacing
between the timer interrupts. This limitation can cause the divergent sample times.

For the supported target computers, the only timer that can generate interrupts is based
on a 1.193 MHz clock. For the Simulink Real-Time system, the timer is set to a fixed
number of ticks of this frequency between interrupts. If you request a sample time of
1/10000 seconds, or 100 microseconds, you do not get exactly 100 ticks. Instead, the
Simulink Real-Time software calculates that number as:

100 x 10
-6
 s X 1.193 x 10

6
 ticks/s = 119.3 ticks

The Simulink Real-Time software rounds this number to the nearest whole number, 119
ticks. The actual sample time is then:

119 ticks/(1.193 X 10
6
 ticks/s) = 99.75 X 10

-6
 s

(99.75 microseconds)

Compared to the requested original sample time of 100 microseconds, this value is 0.25%
faster.

As an example of how you can use this value to derive the expected deviation for your
target computer, assume the following:

• Output board that generates a 50 Hz sine wave (expected signal)
• Sample time of 1/10000
• Measured signal of 50.145 Hz

The difference between the expected and measured signals is 0.145 Hz, which deviates
from the expected signal value by 0.29% (0.145 / 50). Compared to the previously
calculated value of 0.25%, there is a difference of 0.04% from the expected value.

If you want to further refine the measured deviation for your target computer, assume
the following:

• Output board that generates a 50 Hz sine wave (expected signal)

22 Real-Time Application Execution

22-4

• Sample time of 1/10200
• Measured signal of 50.002 Hz

1/10200 s X 1.193 x 10
6
 ticks/s = 116.96 ticks

Round this number to the nearest whole number of 117 ticks. The resulting frequency is
then

(116.96 ticks/117)(50) = 49.983 Hz

The difference between the expected and measured signal is 0.019, which deviates from
the expected signal value by 0.038% (0.019 / 50.002). The deviation when the sample
time is 1/10000 is 0.04%.

Some amount of error is common for most computers, and the margin of error varies from
machine to machine.

Note: Most high-level operating systems, like Microsoft Windows or Linux®, occasionally
insert extra long intervals to compensate for errors in the timer. Be aware that the
Simulink Real-Time software does not attempt to compensate for timer errors. For
this product, close repeatability is more important for most models than exact timing.
However, some chips might have inherent designs that produce residual jitters that could
change your system behavior. For example, some Intel Pentium chips might produce
residual jitters on the order of 0.5 microsecond from interrupt to interrupt.

 What Measured Sample Time Can I Expect?

22-5

What Measured Sample Time Can I Expect?

The Simulink Real-Time kernel is tuned for minimal overhead and maximum
performance. To check what sample time you can expect, run slrtbench at the
MATLAB command line.

• slrtbench('this') — Evaluates your target computer against predefined
benchmarks and compares it to other target computers. The results indicate the
smallest base sample time that a real-time application can achieve on your system.

• slrtbench('model') — Evaluates your target computer against your specific
model.

Actual obtainable sample times depend on a number of factors, including:

• Processor performance
• Model complexity
• I/O block types
• Number of I/O channels

22 Real-Time Application Execution

22-6

Why Has the Stop Time Changed?

If you change the step size of a real-time application after it has been built, it is possible
that the real-time application will execute for fewer steps than you expect. The number of
execution steps is:

floor(stop time/step size)

When you compile code for a model, Simulink Coder calculates a number of steps based
on the current step size and stop time. If the stop time is not an integral multiple of
the step size, Simulink Coder adjusts the stop time for that model based on the original
stop time and step size. If you later change a step size for a real-time application but do
not recompile the code, Simulink Real-Time uses the new step size and the previously
adjusted stop time. The resulting model may execute for fewer steps than you expect.

For example, if a model has a stop time of 2.4 and a step size of 1, Simulink Coder
adjusts the stop time of the model to 2 at compilation. If you change the step size to 0.6
but do not recompile the code, the expected number of steps is 4, but the actual number
of steps is 3 because Simulink Real-Time uses the previously adjusted stop time of 2.

To avoid this problem, verify that the original stop time (as specified in the model) is an
integral multiple of the original step size.

 Why Is the Web Interface Not Working?

22-7

Why Is the Web Interface Not Working?

The Web interface to the target computer requires a connection between a Web browser
and the IP address and port by which you access the target. If this IP address and port
is already in use because you connected to the target via Simulink, Simulink Real-Time
Explorer, or a MATLAB command such as slrt, the Web interface cannot connect and
will fail.

Tip Type the MATLAB command close(slrt) immediately before opening the Web
interface.

23

Real-Time Application Parameters

• “Why Does the getparamid Function Return Nothing?” on page 23-2
• “Which Model Parameters Can I Tune?” on page 23-3

23 Real-Time Application Parameters

23-2

Why Does the getparamid Function Return Nothing?

The SimulinkRealTime.target.getparamid and
SimulinkRealTime.target.getsignalid functions accept block_name parameters.
For these functions, enter for block_name the mangled name that the Simulink Coder
software uses for code generation. You can determine the block_name as follows:

• If you do not have special characters in your model, use the gcb function.
• If the blocks of interest have special characters, retrieve the mangled name with

tg.showsignals='on' or tg.showparam = 'on'.

For example, if carriage return '\n' is part of the block path, the mangled name returns
with carriage returns replaced by spaces.

 Which Model Parameters Can I Tune?

23-3

Which Model Parameters Can I Tune?

You can tune parameters of fixed-point data types, such as Boolean, integer, and double.
For more on fixed-point data types, see “Supported Data Types”.

You cannot tune parameters of complex or multiword data types.

24

Real-Time Application Signals

• “How Do I Fix Invalid File IDs?” on page 24-2
• “Which Model Signals Can I Access?” on page 24-3
• “Signals Display as ? on Target Computer Screen” on page 24-4

24 Real-Time Application Signals

24-2

How Do I Fix Invalid File IDs?

You might get Error -10: Invalid File ID on the target computer if you are
acquiring signal data with a file scope. This error occurs because the size of the signal
data file exceeds the available space on the disk. The signal data is most likely corrupt
and irretrievable. You should delete the signal data file and reboot the Simulink Real-
Time system. To prevent this occurrence, monitor the size of the signal data file as the
scope acquires data.

Refer to the MathWorks Support Simulink Real-Time website (http://
www.mathworks.com/support/search_results.html?q=product:"Simulink

+Real-Time") for additional information.

http://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"
http://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"
http://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"

 Which Model Signals Can I Access?

24-3

Which Model Signals Can I Access?

You cannot directly access signals that you have optimized with block reduction
optimization. To observe these signals, make them test points.

You cannot directly access or tag output signals from a virtual block or virtual bus. To
observe a virtual block:

1 Add a unity Gain block (a Gain block with a gain of 1.0) to the model.
2 Connect the signal output of the virtual block to the input of the unity Gain block.
3 Access or tag the output signal of the unity Gain block.

To observe a virtual bus, add a unity Gain block to each individual signal.

Certain blocks, including some S-function blocks and the To Workspace block, buffer
their input signals to make them contiguous. If you connect a signal to the input port of
such a block and branch the same signal to a Simulink Real-Time Scope block, the Scope
block cannot access the signal. To observe such a signal, add a unity Gain block before
the input to the Scope block.

You cannot access signals of complex or multiword data types.

See Also
Gain

24 Real-Time Application Signals

24-4

Signals Display as ? on Target Computer Screen

The kernel displays a ? in place of a non-ASCII character in a signal or parameter
name. The Simulink Real-Time kernel does not support Unicode or other non-ASCII
characters. Signal and parameter names that include Unicode characters are displayed
as expected in Simulink Real-Time Explorer and at the MATLAB command line. For
more information, see “Internationalization Issues” on page 5-126.

25

Real-Time Application Performance

• “How Can I Improve Run-Time Performance?” on page 25-2
• “Why Does Model Execution Produce CPU Overloads?” on page 25-4
• “How Small Can the Sample Time Be?” on page 25-6
• “Can I Allow CPU Overloads?” on page 25-7

25 Real-Time Application Performance

25-2

How Can I Improve Run-Time Performance?

To improve runtime performance and reduce the task execution time (TET) of a model
model:

1 Run slrtbench at the MATLAB command line:

• slrtbench('this') — Evaluates your target computer against predefined
benchmarks and compares it to other target computers. The results indicate the
smallest base sample time that a real-time application can achieve on your target
computer.

• slrtbench('model') — Evaluates your target computer against your specific
model.

2 If your target computer is not high on the list of benchmark computers, consider
switching to a target computer with higher performance.

3 Run the Simulink Real-Time profiler on model and record where the time is being
spent. (See “Execution Profiling for Real-Time Applications” on page 10-15.)

4 If the model contains many states (for example, more than 20 states), clear the
States check box in the Data Import/Export pane of the Configuration Parameters
dialog box. This disables state logging, making more memory available for the real-
time application.

5 Clear the Save to workspace check boxes in the Data Import/Export pane of
the Configuration Parameters dialog box (Time, States, Output, Final states,
Signal logging). This turns logging off, making more computing time available for
calculating the model.

6 Clear the Log Task Execution Time check box in the Simulink Real-Time
Options pane of the Configuration Parameters dialog box. This disables TET
logging for the real-time application.

7 Increase Fixed-step size (fundamental sample time) in the Solver pane of
the Configuration Parameters dialog box. Executing with a very short sample time
might overload the CPU.

8 Use polling mode, if you do not need background processes (see “Polling Mode” on
page 6-5 for more on setting this mode).

9 Disable the target scope display. To do this, clear the Graphics mode check box in
the Target settings pane of Simulink Real-Time Explorer.

10 Use fewer scopes in the model.
11 Eliminate or minimize target computer disk I/O in your model.
12 Reduce the number of I/O channels in the model.
13 Consider partitioning the model and running it on a multicore system (see “Multicore

Programming with Simulink”).

 How Can I Improve Run-Time Performance?

25-3

To use your target computer in multicore mode, you must set the Multicore CPU
check box in the Target settings pane of Simulink Real-Time Explorer.

14 Consider partitioning the model and running it on multiple target computers. This
optimization might require multitarget synchronization using CAN, UDP, parallel
port, or reflective memory.

15 Check the questions and answers under Real-Time Application Performance for tips
on eliminating CPU overloads and improving task execution time.

16 Check the MathWorks Support website, MATLAB Answers, and MATLAB Central
for tips. If these do not solve your problem, call MathWorks Technical Support. See
“Getting Simulink Real-Time Support” on page 26-2.

25 Real-Time Application Performance

25-4

Why Does Model Execution Produce CPU Overloads?

A CPU overload indicates that the CPU was unable to complete processing a model time
step before being asked to restart. When an overload occurs, one of the following can
happen:

• The Simulink Real-Time kernel halts model execution.
• If the overload is allowed, the model execution continues until a predefined event (see

“Can I Allow CPU Overloads?” on page 25-7 for details). If a model continues
running after a CPU overload, the model time step is as long as the time required to
finish the execution. This behavior delays the following time step.

This error might occur if you have:

• Real CPU overloads — Those caused by model design or target computer resources.
For example, a model is trying to do more than can be done in the allocated time on
the target computer. Possible reasons are:

• The target computer is too slow or the model sample time is too small (see “How
Small Can the Sample Time Be?” on page 25-6).

• The model is too complex (algorithmic complexity).
• The model does disk I/O on the target computer hard drive.
• Channel I/O latency, where each I/O channel used introduces latency into the

system. This might cause the execution time to exceed the model time step.

To address I/O latency, you can use the Simulink Real-Time Interactive Guide,

http://www.mathworks.com/products/simulink-real-time/supported/

hardware-drivers.html,

to find latency numbers for boards supported by the block library. For example,
if your real-time application includes the National Instruments® PCI-6713 board,
and you want to use four outputs:

1 Look up the board in the Simulink Real-Time Interactive Guide:

http://www.mathworks.com/products/simulink-real-time/

supported/hardware-drivers.html.

From the table, the D/A latency is 1+2.4N.

http://www.mathworks.com/products/simulink-real-time/supported/hardware-drivers.html
http://www.mathworks.com/products/simulink-real-time/supported/hardware-drivers.html
http://www.mathworks.com/products/simulink-real-time/supported/hardware-drivers.html
http://www.mathworks.com/products/simulink-real-time/supported/hardware-drivers.html

 Why Does Model Execution Produce CPU Overloads?

25-5

2 To get the latency for four outputs, calculate the latency

1+(2.4 x 4) = 10.6 microseconds
3 Include this value in your sample time calculations.

• Spurious CPU overloads — Commonly caused by factors outside of the model
design. These overloads are most likely caused by one of the following:

• Advanced Power Management
• Plug-and-Play (PnP) operating system
• System Management Interrupts (SMIs)

Enabling these properties can cause non-real-time behavior from the target computer.
You must disable these BIOS properties for the target computer to run the application
as a real-time application. See“BIOS Settings”.

Some BIOS do not allow you to disable SMIs.. However, for some chip sets, you can
programmatically prevent or disable SMIs. For example, see the Disabling SMIs on
Intel ICH5 Chipsets document at MATLAB Central for a solution to disabling SMIs in
the Intel ICH5 family.

For further information and test models, see the Simulink Real-Time CPU Overloads
document at MATLAB Central.

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=18832&objectType=file
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=18832&objectType=file
http://www.mathworks.com/matlabcentral/fileexchange/23507

25 Real-Time Application Performance

25-6

How Small Can the Sample Time Be?

If the model has too small a sample time, a CPU overload can occur. This error indicates
that to run the real-time application, executing one step of the model requires more time
than the sample time for the model (Fixed step size property) allows.

When this error occurs, the target object property CPUoverload changes from none to
detected. To diagnose the issue:

1 Run slrtbench at the MATLAB command line:

• slrtbench('this') — Evaluates your target computer against predefined
benchmarks and compares it to other target computers. The results indicate
the smallest base sample time that a real-time application can achieve on your
system.

• slrtbench('model') — Evaluates your target computer against your specific
model.

2 Change the model Fixed step size property to at least the indicated value
and rebuild the model. Use the Solver node in the Simulink model Configuration
Parameters dialog.

3 If these steps do not solve your problem, see:

“How Can I Improve Run-Time Performance?” on page 25-2.

 Can I Allow CPU Overloads?

25-7

Can I Allow CPU Overloads?

Typically, the Simulink Real-Time kernel halts model execution when it encounters
a CPU overload. However, you can direct the Simulink Real-Time environment
to allow CPU overloads using the TLCOptions settings xPCMaxOverloads,
xPCMaxOverloadLen, and xPCStartupFlag. For more information, see “Maximizing
Target Computer CPU Usage” on page 10-13.

26

Simulink Real-Time Support

26 Simulink Real-Time Support

26-2

Getting Simulink Real-Time Support

For support on general MATLAB or Simulink issues, see the MathWorks Support
website (http://www.mathworks.com/support).

For support on Simulink Real-Time issues, see the following:

• Simulink Real-Time Support website: http://www.mathworks.com/support/
search_results.html?q=product:"Simulink+Real-Time"

• Simulink Real-Time Answers:

• http://www.mathworks.com/matlabcentral/answers/?term=Simulink

+Real-Time

• http://www.mathworks.com/matlabcentral/answers/?term=xPC+Target

• Simulink Real-Time Central File Exchange:

• http://www.mathworks.com/matlabcentral/fileexchange/?

term=Simulink+Real-Time

• http://www.mathworks.com/matlabcentral/fileexchange/?term=xPC

+Target

If you cannot solve your problem after searching these resources, do the following:

1 Call function SimulinkRealTime.getSupportInfo to retrieve diagnostic
information for your Simulink Real-Time configuration. This function writes the
diagnostic information to the file slrtinfo.txt in the current folder.

Note: The slrtinfo.txt file might contain information sensitive to your
organization. Review the contents of this file before disclosing it to MathWorks.

2 Contact MathWorks directly for online or phone support: http://
www.mathworks.com/support/contact_us

http://www.mathworks.com/support
http://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"
http://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"
http://www.mathworks.com/matlabcentral/answers/?term=Simulink+Real-Time
http://www.mathworks.com/matlabcentral/answers/?term=Simulink+Real-Time
http://www.mathworks.com/matlabcentral/answers/?term=xPC+Target
http://www.mathworks.com/matlabcentral/fileexchange/?term=Simulink+Real-Time
http://www.mathworks.com/matlabcentral/fileexchange/?term=Simulink+Real-Time
http://www.mathworks.com/matlabcentral/fileexchange/?term=xPC+Target
http://www.mathworks.com/matlabcentral/fileexchange/?term=xPC+Target
http://www.mathworks.com/support/contact_us
http://www.mathworks.com/support/contact_us

 Installing Simulink Real-Time Software Updates

26-3

Installing Simulink Real-Time Software Updates

The general procedure for updating Simulink Real-Time is the same as for other
MathWorks products:

1 Navigate to the MathWorks download page (http://www.mathworks.com/
downloads/).

2 Navigate to the page for the Simulink Real-Time software version you want and
download it to your development computer.

3 Install and integrate the new release software.

After updating Simulink Real-Time, you must carry out the following steps to recreate
your Simulink Real-Time environment.

1 Type slrtexplr in the MATLAB Command Window.
2 In the Targets pane, expand the target computer node.
3 Click the Target Properties icon in the toolbar or double-click Properties.
4 Select Host-to-Target communication and select the required communication

method between your development and target computers (see “Serial Link Setup” or
Network Communication).

Note: RS-232 communication type will be removed in a future release. Use TCP/IP
instead.

5 Select Boot configuration and click Create boot disk.
6 Reboot the target computer.
7 In the Simulink Editor window and from the Code menu, click C/C++ Code > Build

Model for each model to be executed.

http://www.mathworks.com/downloads/
http://www.mathworks.com/downloads/

